import cv2 import numpy as np from registry import registry @registry.register("Original") def original(image): return image @registry.register("Dot Effect", defaults={ "dot_size": 10, "dot_spacing": 2, "invert": False, }, min_vals={ "dot_size": 1, "dot_spacing": 1, }, max_vals={ "dot_size": 20, "dot_spacing": 10, }, step_vals={ "dot_size": 1, "dot_spacing": 1, }) def dot_effect(image, dot_size: int = 10, dot_spacing: int = 2, invert: bool = False): """ ## Convert your image into a dotted pattern. **Args:** * `image` (numpy.ndarray): Input image (BGR or grayscale) * `dot_size` (int): Size of each dot * `dot_spacing` (int): Spacing between dots * `invert` (bool): Invert the dots **Returns:** * `numpy.ndarray`: Dotted image """ # Convert to grayscale if image is color if len(image.shape) == 3: gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: gray = image # Apply adaptive thresholding to improve contrast gray = cv2.adaptiveThreshold( gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 25, # Block size 5 # Constant subtracted from mean ) height, width = gray.shape canvas = np.zeros_like(gray) if not invert else np.full_like(gray, 255) y_dots = range(0, height, dot_size + dot_spacing) x_dots = range(0, width, dot_size + dot_spacing) dot_color = 255 if not invert else 0 for y in y_dots: for x in x_dots: region = gray[y:min(y+dot_size, height), x:min(x+dot_size, width)] if region.size > 0: brightness = np.mean(region) # Dynamic dot sizing based on brightness relative_brightness = brightness / 255.0 if invert: relative_brightness = 1 - relative_brightness # Draw circle with size proportional to brightness radius = int((dot_size/2) * relative_brightness) if radius > 0: cv2.circle(canvas, (x + dot_size//2, y + dot_size//2), radius, (dot_color), -1) return canvas @registry.register("Pixelize", defaults={ "pixel_size": 10, }, min_vals={ "pixel_size": 1, }, max_vals={ "pixel_size": 50, }, step_vals={ "pixel_size": 1, }) def pixelize(image, pixel_size: int = 10): """ ## Apply a pixelization effect to the image. **Args:** * `image` (numpy.ndarray): Input image (BGR or grayscale) * `pixel_size` (int): Size of each pixel block **Returns:** * `numpy.ndarray`: Pixelized image """ height, width = image.shape[:2] # Resize the image to a smaller size small_height = height // pixel_size small_width = width // pixel_size small_image = cv2.resize( image, (small_width, small_height), interpolation=cv2.INTER_LINEAR) # Resize back to the original size with nearest neighbor interpolation pixelized_image = cv2.resize( small_image, (width, height), interpolation=cv2.INTER_NEAREST) return pixelized_image @registry.register("Sketch Effect") def sketch_effect(image): """ ## Apply a sketch effect to the image. **Args:** * `image` (numpy.ndarray): Input image (BGR or grayscale) **Returns:** * `numpy.ndarray`: Sketch effect applied image """ # Convert the image to grayscale if len(image.shape) == 3: gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: gray = image # Invert the grayscale image inverted_gray = cv2.bitwise_not(gray) # Apply Gaussian blur to the inverted image blurred = cv2.GaussianBlur(inverted_gray, (21, 21), 0) # Fixed kernel size # Blend the grayscale image with the blurred inverted image sketch = cv2.divide(gray, 255 - blurred, scale=256) return sketch @registry.register("Warm", defaults={ "intensity": 30, }, min_vals={ "intensity": 0, }, max_vals={ "intensity": 100, }, step_vals={ "intensity": 1, }) def warm_filter(image, intensity: int = 30): """ ## Adds a warm color effect to the image. **Args:** * `image` (numpy.ndarray): Input image (BGR) * `intensity` (int): Intensity of the warm effect (0-100) **Returns:** * `numpy.ndarray`: Image with warm color effect """ # Convert intensity to actual adjustment values intensity_scale = intensity / 100.0 # Split the image into BGR channels b, g, r = cv2.split(image.astype(np.float32)) # Increase red, slightly increase green, decrease blue r = np.clip(r * (1 + 0.5 * intensity_scale), 0, 255) g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255) b = np.clip(b * (1 - 0.1 * intensity_scale), 0, 255) return cv2.merge([b, g, r]).astype(np.uint8) @registry.register("Cool", defaults={ "intensity": 30, }, min_vals={ "intensity": 0, }, max_vals={ "intensity": 100, }, step_vals={ "intensity": 1, }) def cool_filter(image, intensity: int = 30): """ ## Adds a cool color effect to the image. **Args:** * `image` (numpy.ndarray): Input image (BGR) * `intensity` (int): Intensity of the cool effect (0-100) **Returns:** * `numpy.ndarray`: Image with cool color effect """ # Convert intensity to actual adjustment values intensity_scale = intensity / 100.0 # Split the image into BGR channels b, g, r = cv2.split(image.astype(np.float32)) # Increase blue, slightly increase green, decrease red b = np.clip(b * (1 + 0.5 * intensity_scale), 0, 255) g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255) r = np.clip(r * (1 - 0.1 * intensity_scale), 0, 255) return cv2.merge([b, g, r]).astype(np.uint8) @registry.register("Saturation", defaults={ "factor": 50, }, min_vals={ "factor": 0, }, max_vals={ "factor": 100, }, step_vals={ "factor": 1, }) def adjust_saturation(image, factor: int = 50): """ ## Adjusts the saturation of the image. **Args:** * `image` (numpy.ndarray): Input image (BGR) * `factor` (int): Saturation factor (0-100, 50 is normal) **Returns:** * `numpy.ndarray`: Image with adjusted saturation """ # Convert factor to multiplication value (0.0 to 2.0) factor = (factor / 50.0) # Convert to HSV hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).astype(np.float32) # Adjust saturation hsv[:, :, 1] = np.clip(hsv[:, :, 1] * factor, 0, 255) # Convert back to BGR return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2BGR) @registry.register("Vintage", defaults={ "intensity": 50, }, min_vals={ "intensity": 0, }, max_vals={ "intensity": 100, }, step_vals={ "intensity": 1, }) def vintage_filter(image, intensity: int = 50): """ ## Adds a vintage/retro effect to the image. **Args:** * `image` (numpy.ndarray): Input image (BGR) * `intensity` (int): Intensity of the vintage effect (0-100) **Returns:** * `numpy.ndarray`: Image with vintage effect """ intensity_scale = intensity / 100.0 # Split channels b, g, r = cv2.split(image.astype(np.float32)) # Adjust colors for vintage look r = np.clip(r * (1 + 0.3 * intensity_scale), 0, 255) g = np.clip(g * (1 - 0.1 * intensity_scale), 0, 255) b = np.clip(b * (1 - 0.2 * intensity_scale), 0, 255) # Create sepia-like effect result = cv2.merge([b, g, r]).astype(np.uint8) # Add slight blur for softness if intensity > 0: blur_amount = int(3 * intensity_scale) * 2 + 1 result = cv2.GaussianBlur(result, (blur_amount, blur_amount), 0) return result @registry.register("Vignette", defaults={ "intensity": 50, }, min_vals={ "intensity": 0, }, max_vals={ "intensity": 100, }, step_vals={ "intensity": 1, }) def vignette_effect(image, intensity: int = 50): """ ## Adds a vignette effect (darker corners) to the image. **Args:** * `image` (numpy.ndarray): Input image (BGR) * `intensity` (int): Intensity of the vignette (0-100) **Returns:** * `numpy.ndarray`: Image with vignette effect """ height, width = image.shape[:2] # Create a vignette mask X_resultant = np.abs(np.linspace(-1, 1, width)[None, :]) Y_resultant = np.abs(np.linspace(-1, 1, height)[:, None]) mask = np.sqrt(X_resultant**2 + Y_resultant**2) mask = 1 - np.clip(mask, 0, 1) # Adjust mask based on intensity mask = (mask - mask.min()) / (mask.max() - mask.min()) mask = mask ** (1 + intensity/50) # Apply mask to image mask = mask[:, :, None] result = image.astype(np.float32) * mask return np.clip(result, 0, 255).astype(np.uint8) @registry.register("HDR Effect", defaults={ "strength": 50, }, min_vals={ "strength": 0, }, max_vals={ "strength": 100, }, step_vals={ "strength": 1, }) def hdr_effect(image, strength: int = 50): """ ## Applies an HDR-like effect to enhance image details. **Args:** * `image` (numpy.ndarray): Input image (BGR) * `strength` (int): Strength of the HDR effect (0-100) **Returns:** * `numpy.ndarray`: Image with HDR-like effect """ strength_scale = strength / 100.0 # Convert to LAB color space lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB).astype(np.float32) # Split channels l, a, b = cv2.split(lab) # Apply CLAHE to L channel clahe = cv2.createCLAHE( clipLimit=3.0 * strength_scale, tileGridSize=(8, 8)) l = clahe.apply(l.astype(np.uint8)).astype(np.float32) # Enhance local contrast if strength > 0: blur = cv2.GaussianBlur(l, (0, 0), 3) detail = cv2.addWeighted( l, 1 + strength_scale, blur, -strength_scale, 0) l = cv2.addWeighted(l, 1 - strength_scale/2, detail, strength_scale/2, 0) # Merge channels and convert back enhanced_lab = cv2.merge([l, a, b]) result = cv2.cvtColor(enhanced_lab.astype(np.uint8), cv2.COLOR_LAB2BGR) return result @registry.register("Gaussian Blur", defaults={ "kernel_size": 5, }, min_vals={ "kernel_size": 1, }, max_vals={ "kernel_size": 31, }, step_vals={ "kernel_size": 2, }) def gaussian_blur(image, kernel_size: int = 5): """ ## Apply Gaussian blur effect to the image. **Args:** * `image` (numpy.ndarray): Input image (BGR) * `kernel_size` (int): Size of the Gaussian kernel (must be odd) **Returns:** * `numpy.ndarray`: Blurred image """ # Ensure kernel size is odd if kernel_size % 2 == 0: kernel_size += 1 return cv2.GaussianBlur(image, (kernel_size, kernel_size), 0) @registry.register("Sharpen", defaults={ "amount": 50, }, min_vals={ "amount": 0, }, max_vals={ "amount": 100, }, step_vals={ "amount": 1, }) def sharpen(image, amount: int = 50): """ ## Sharpen the image. **Args:** * `image` (numpy.ndarray): Input image (BGR) * `amount` (int): Sharpening intensity (0-100) **Returns:** * `numpy.ndarray`: Sharpened image """ amount = amount / 100.0 # Create the sharpening kernel kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) # Apply the kernel sharpened = cv2.filter2D(image, -1, kernel) # Blend with original image based on amount return cv2.addWeighted(image, 1 - amount, sharpened, amount, 0) @registry.register("Emboss", defaults={ "strength": 50, "direction": 0, }, min_vals={ "strength": 0, "direction": 0, }, max_vals={ "strength": 100, "direction": 7, }, step_vals={ "strength": 1, "direction": 1, }) def emboss(image, strength: int = 50, direction: int = 0): """ ## Apply emboss effect to create a 3D look. **Args:** * `image` (numpy.ndarray): Input image (BGR) * `strength` (int): Emboss strength (0-100) * `direction` (int): Direction of emboss effect (0-7) **Returns:** * `numpy.ndarray`: Embossed image """ strength = strength / 100.0 * 2.0 # Scale to 0-2 range # Define kernels for different directions kernels = [ np.array([[-1, -1, 0], [-1, 1, 1], [0, 1, 1]]), # 0 - top left to bottom right np.array([[-1, 0, 1], [-1, 1, 1], [-1, 0, 1]]), # 1 - left to right np.array([[0, 1, 1], [-1, 1, 1], [-1, -1, 0]]), # 2 - bottom left to top right np.array([[1, 1, 1], [0, 1, 0], [-1, -1, -1]]), # 3 - bottom to top np.array([[1, 1, 0], [1, 1, -1], [0, -1, -1]]), # 4 - bottom right to top left np.array([[1, 0, -1], [1, 1, -1], [1, 0, -1]]), # 5 - right to left np.array([[0, -1, -1], [1, 1, -1], [1, 1, 0]]), # 6 - top right to bottom left np.array([[-1, -1, -1], [0, 1, 0], [1, 1, 1]]) # 7 - top to bottom ] # Apply the kernel kernel = kernels[direction % 8] gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) embossed = cv2.filter2D(gray, -1, kernel * strength) # Normalize to ensure good contrast embossed = cv2.normalize(embossed, None, 0, 255, cv2.NORM_MINMAX) # Convert back to BGR return cv2.cvtColor(embossed.astype(np.uint8), cv2.COLOR_GRAY2BGR) @registry.register("Oil Painting", defaults={ "size": 5, "dynRatio": 1, }, min_vals={ "size": 1, "dynRatio": 1, }, max_vals={ "size": 15, "dynRatio": 7, }, step_vals={ "size": 2, "dynRatio": 1, }) def oil_painting(image, size: int = 5, dynRatio: int = 1): """ ## Apply oil painting effect to the image. **Args:** * `image` (numpy.ndarray): Input image (BGR) * `size` (int): Size of the neighborhood considered * `dynRatio` (int): Dynamic ratio affecting the intensity binning **Returns:** * `numpy.ndarray`: Image with oil painting effect """ return cv2.xphoto.oilPainting(image, size, dynRatio) @registry.register("Black and White") def black_and_white(image): """ ## Convert image to classic black and white. **Args:** * `image` (numpy.ndarray): Input image (BGR) **Returns:** * `numpy.ndarray`: Grayscale image """ return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) @registry.register("Sepia") def sepia(image): """ ## Apply a warm sepia tone effect. **Args:** * `image` (numpy.ndarray): Input image (BGR) **Returns:** * `numpy.ndarray`: Sepia toned image """ # Convert to RGB rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Apply sepia matrix sepia_matrix = np.array([ [0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131] ]) sepia_image = np.dot(rgb, sepia_matrix.T) sepia_image = np.clip(sepia_image, 0, 255) return cv2.cvtColor(sepia_image.astype(np.uint8), cv2.COLOR_RGB2BGR) @registry.register("Negative") def negative(image): """ ## Invert colors to create a negative effect. **Args:** * `image` (numpy.ndarray): Input image (BGR) **Returns:** * `numpy.ndarray`: Negative image """ return cv2.bitwise_not(image) @registry.register("Watercolor") def watercolor(image): """ ## Apply a watercolor painting effect. **Args:** * `image` (numpy.ndarray): Input image (BGR) **Returns:** * `numpy.ndarray`: Watercolor effect image """ # Apply bilateral filter to create watercolor effect return cv2.xphoto.oilPainting(image, 7, 1) @registry.register("Posterization") def posterize(image): """ ## Reduce colors to create a posterization effect. **Args:** * `image` (numpy.ndarray): Input image (BGR) **Returns:** * `numpy.ndarray`: Posterized image """ # Convert to HSV hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # Reduce color levels hsv[:, :, 1] = cv2.equalizeHist(hsv[:, :, 1]) hsv[:, :, 2] = cv2.equalizeHist(hsv[:, :, 2]) # Convert back to BGR return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) @registry.register("Cross Process") def cross_process(image): """ ## Apply a film cross-processing effect. **Args:** * `image` (numpy.ndarray): Input image (BGR) **Returns:** * `numpy.ndarray`: Cross-processed image """ # Split channels b, g, r = cv2.split(image.astype(np.float32)) # Apply cross-process transformation b = np.clip(b * 1.2, 0, 255) g = np.clip(g * 0.8, 0, 255) r = np.clip(r * 1.4, 0, 255) return cv2.merge([b, g, r]).astype(np.uint8)