StarryXL-Demo / app.py
eienmojiki's picture
Update app.py
f55d70c verified
raw
history blame
8 kB
import os
import random
from typing import Callable, Dict, Optional, Tuple
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from transformers import CLIPTextModel
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, DDIMScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
MODEL = "eienmojiki/Starry-XL-v5.2"
HF_TOKEN = os.getenv("HF_TOKEN")
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
sampler_list = [
"DPM++ 2M Karras",
"DPM++ SDE Karras",
"DPM++ 2M SDE Karras",
"Euler",
"Euler a",
"DDIM",
]
examples = [
"""
1girl,
midori \(blue archive\), blue archive,
(ningen mame:0.9), ciloranko, sho \(sho lwlw\), (tianliang duohe fangdongye:0.8), ask \(askzy\), wlop,
indoors, plant, hair bow, cake, cat ears, food, smile, animal ear headphones, bare legs, short shorts, drawing \(object\), feet, legs, on back, bed, solo, green eyes, cat, table, window blinds, headphones, nintendo switch, toes, bow, toenails, looking at viewer, chips \(food\), potted plant, halo, calendar \(object\), tray, blonde hair, green halo, lying, barefoot, bare shoulders, blunt bangs, green shorts, picture frame, fake animal ears, closed mouth, shorts, handheld game console, green bow, animal ears, on bed, medium hair, knees up, upshorts, eating, potato chips, pillow, blush, dolphin shorts, ass, character doll, alternate costume,
masterpiece, newest, absurdres
"""
]
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def seed_everything(seed: int) -> torch.Generator:
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
generator = torch.Generator()
generator.manual_seed(seed)
return generator
def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]:
scheduler_factory_map = {
"DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
),
"Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config),
"Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(scheduler_config),
"DDIM": lambda: DDIMScheduler.from_config(scheduler_config),
}
return scheduler_factory_map.get(name, lambda: None)()
def load_pipeline(model_name):
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_pretrained(
model_name,
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
safety_checker=None,
use_safetensors=True,
add_watermarker=False,
use_auth_token=HF_TOKEN
)
pipe.to(device)
return pipe
@spaces.GPU(enable_queue=False)
def generate(
prompt: str,
negative_prompt: str = None,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 5.0,
num_inference_steps: int = 26,
sampler: str = "Eul""er a",
clip_skip: int = 1,
):
"""
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_pretrained(
MODEL,
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
safety_checker=None,
use_safetensors=True,
add_watermarker=False,
use_auth_token=HF_TOKEN
)
"""
generator = seed_everything(seed)
pipe.scheduler = get_scheduler(pipe.scheduler.config, sampler)
pipe.text_encoder = CLIPTextModel.from_pretrained(
MODEL,
subfolder = "text_encoder",
num_hidden_layers = 12 - (clip_skip - 1),
torch_dtype = torch.float16
)
pipe.to(device)
try:
img = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
width = width,
height = height,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
generator = generator,
output_type="pil",
).images
return img, seed
except Exception as e:
print(f"An error occurred: {e}")
with gr.Blocks(
theme=gr.themes.Soft()
) as demo:
gr.Markdown("# Starry XL 5.2 Demo")
with gr.Group():
prompt = gr.Text(
label="Prompt",
placeholder="Enter your prompt here..."
)
negative_prompt = gr.Text(
label="Negative Prompt",
placeholder="(Optional) Enter your negative prompt here..."
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
sampler = gr.Dropdown(
label="Sampler",
choices=sampler_list,
interactive=True,
value="Euler a",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Steps",
minimum=10,
maximum=100,
step=1,
value=25,
)
clip_skip = gr.Slider(
label="Clip Skip",
minimum=1,
maximum=2,
step=1,
value=1
)
run_button = gr.Button("Run")
result = gr.Gallery(
label="Result",
columns=1,
height="512px",
preview=True,
show_label=False
)
with gr.Group():
used_seed = gr.Number(label="Used Seed", interactive=False)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, used_seed],
fn=lambda *args, **kwargs: generate(*args, **kwargs),
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
sampler,
clip_skip
],
outputs=[result, used_seed],
api_name="run"
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_error=True)