Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
import random
|
3 |
from typing import Callable, Dict, Optional, Tuple
|
4 |
|
@@ -9,7 +10,7 @@ import spaces
|
|
9 |
import torch
|
10 |
|
11 |
from transformers import CLIPTextModel
|
12 |
-
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, DDIMScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
|
13 |
|
14 |
MODEL = "eienmojiki/Starry-XL-v5.2"
|
15 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
@@ -93,6 +94,28 @@ def load_pipeline(model_name):
|
|
93 |
pipe.to(device)
|
94 |
return pipe
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
@spaces.GPU(enable_queue=False)
|
97 |
def generate(
|
98 |
prompt: str,
|
@@ -118,9 +141,11 @@ def generate(
|
|
118 |
|
119 |
pipe.to(device)
|
120 |
|
|
|
|
|
121 |
try:
|
122 |
|
123 |
-
|
124 |
prompt = prompt,
|
125 |
negative_prompt = negative_prompt,
|
126 |
width = width,
|
@@ -129,6 +154,19 @@ def generate(
|
|
129 |
num_inference_steps = num_inference_steps,
|
130 |
generator = generator,
|
131 |
num_images_per_prompt=1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
output_type="pil",
|
133 |
).images[0]
|
134 |
|
@@ -136,6 +174,9 @@ def generate(
|
|
136 |
|
137 |
except Exception as e:
|
138 |
print(f"An error occurred: {e}")
|
|
|
|
|
|
|
139 |
|
140 |
if torch.cuda.is_available():
|
141 |
pipe = load_pipeline(MODEL)
|
|
|
1 |
import os
|
2 |
+
import gc
|
3 |
import random
|
4 |
from typing import Callable, Dict, Optional, Tuple
|
5 |
|
|
|
10 |
import torch
|
11 |
|
12 |
from transformers import CLIPTextModel
|
13 |
+
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, DDIMScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
|
14 |
|
15 |
MODEL = "eienmojiki/Starry-XL-v5.2"
|
16 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
94 |
pipe.to(device)
|
95 |
return pipe
|
96 |
|
97 |
+
def common_upscale(
|
98 |
+
samples: torch.Tensor,
|
99 |
+
width: int,
|
100 |
+
height: int,
|
101 |
+
upscale_method: str,
|
102 |
+
) -> torch.Tensor:
|
103 |
+
return torch.nn.functional.interpolate(
|
104 |
+
samples, size=(height, width), mode=upscale_method
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
def upscale(
|
109 |
+
samples: torch.Tensor, upscale_method: str, scale_by: float
|
110 |
+
) -> torch.Tensor:
|
111 |
+
width = round(samples.shape[3] * scale_by)
|
112 |
+
height = round(samples.shape[2] * scale_by)
|
113 |
+
return common_upscale(samples, width, height, upscale_method)
|
114 |
+
|
115 |
+
def free_memory() -> None:
|
116 |
+
torch.cuda.empty_cache()
|
117 |
+
gc.collect()
|
118 |
+
|
119 |
@spaces.GPU(enable_queue=False)
|
120 |
def generate(
|
121 |
prompt: str,
|
|
|
141 |
|
142 |
pipe.to(device)
|
143 |
|
144 |
+
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
145 |
+
|
146 |
try:
|
147 |
|
148 |
+
latents = pipe(
|
149 |
prompt = prompt,
|
150 |
negative_prompt = negative_prompt,
|
151 |
width = width,
|
|
|
154 |
num_inference_steps = num_inference_steps,
|
155 |
generator = generator,
|
156 |
num_images_per_prompt=1,
|
157 |
+
output_type="latents",
|
158 |
+
).images
|
159 |
+
|
160 |
+
upscaled_latents = upscale(latents, "nearest-exact", 2.0)
|
161 |
+
|
162 |
+
img = upscaler_pipe(
|
163 |
+
prompt=prompt,
|
164 |
+
negative_prompt=negative_prompt,
|
165 |
+
image=upscaled_latents,
|
166 |
+
guidance_scale=guidance_scale,
|
167 |
+
num_inference_steps=num_inference_steps,
|
168 |
+
strength=0.55,
|
169 |
+
generator=generator,
|
170 |
output_type="pil",
|
171 |
).images[0]
|
172 |
|
|
|
174 |
|
175 |
except Exception as e:
|
176 |
print(f"An error occurred: {e}")
|
177 |
+
finally:
|
178 |
+
del upscaler_pipe
|
179 |
+
free_memory()
|
180 |
|
181 |
if torch.cuda.is_available():
|
182 |
pipe = load_pipeline(MODEL)
|