Spaces:
Sleeping
Sleeping
Commit
·
f549a1f
1
Parent(s):
8ece4a0
~~
Browse files
app.py
CHANGED
@@ -1,7 +1,66 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from typing import Callable, Dict, Optional, Tuple
|
4 |
+
|
5 |
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import PIL.Image
|
8 |
+
import spaces
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from transformers import CLIPTextModel
|
12 |
+
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, DDIMScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
|
13 |
+
|
14 |
+
MODEL = "eienmojiki/Starry-XL-v5.2"
|
15 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
16 |
+
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
|
17 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
|
18 |
+
MAX_SEED = np.iinfo(np.int32).max
|
19 |
+
|
20 |
+
torch.backends.cudnn.deterministic = True
|
21 |
+
torch.backends.cudnn.benchmark = False
|
22 |
+
|
23 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
24 |
+
|
25 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
26 |
+
if randomize_seed:
|
27 |
+
seed = random.randint(0, MAX_SEED)
|
28 |
+
return seed
|
29 |
+
|
30 |
+
def seed_everything(seed: int) -> torch.Generator:
|
31 |
+
torch.manual_seed(seed)
|
32 |
+
torch.cuda.manual_seed_all(seed)
|
33 |
+
np.random.seed(seed)
|
34 |
+
generator = torch.Generator()
|
35 |
+
generator.manual_seed(seed)
|
36 |
+
return generator
|
37 |
+
|
38 |
+
def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]:
|
39 |
+
scheduler_factory_map = {
|
40 |
+
"DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(
|
41 |
+
scheduler_config, use_karras_sigmas=True
|
42 |
+
),
|
43 |
+
"DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(
|
44 |
+
scheduler_config, use_karras_sigmas=True
|
45 |
+
),
|
46 |
+
"DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(
|
47 |
+
scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
|
48 |
+
),
|
49 |
+
"Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config),
|
50 |
+
"Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(scheduler_config),
|
51 |
+
"DDIM": lambda: DDIMScheduler.from_config(scheduler_config),
|
52 |
+
}
|
53 |
+
return scheduler_factory_map.get(name, lambda: None)()
|
54 |
|
55 |
+
def load_pipeline(model_name):
|
56 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
57 |
+
model_name,
|
58 |
+
torch_dtype=torch.float16,
|
59 |
+
custom_pipeline="lpw_stable_diffusion_xl",
|
60 |
+
use_safetensors=True,
|
61 |
+
add_watermarker=False,
|
62 |
+
use_auth_token=HF_TOKEN,
|
63 |
+
)
|
64 |
+
pipe.to(device)
|
65 |
+
return pipe
|
66 |
|
|
|
|