File size: 9,359 Bytes
0b43831 e7b3a9f 0b43831 e7b3a9f 0b43831 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import os
import json
import numpy as np
import ffmpeg
import whisper
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from sklearn.tree import DecisionTreeRegressor
import torch
import youtube_dl
import pandas as pd
import streamlit as st
import altair as alt
DATA_DIR = "./data"
if not os.path.exists(DATA_DIR):
os.makedirs(DATA_DIR)
YDL_OPTS = {
"download_archive": os.path.join(DATA_DIR, "archive.txt"),
"format": "bestaudio/best",
"outtmpl": os.path.join(DATA_DIR, "%(title)s.%(ext)s"),
"postprocessors": [
{
"key": "FFmpegExtractAudio",
"preferredcodec": "mp3",
"preferredquality": "192",
}
],
}
llm = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
device = "cuda" if torch.cuda.is_available() else "cpu"
def download(url, ydl_opts):
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
result = ydl.extract_info("{}".format(url))
fname = ydl.prepare_filename(result)
return fname
def transcribe(audio_path, transcript_path):
if os.path.exists(transcript_path):
with open(transcript_path, "r") as f:
result = json.load(f)
else:
whisper_model = whisper.load_model("base")
result = whisper_model.transcribe(audio_path)
with open(transcript_path, "w") as f:
json.dump(result, f)
return result["segments"]
def compute_seg_durations(segments):
return [s["end"] - s["start"] for s in segments]
def compute_info_densities(
segments, seg_durations, llm, tokenizer, device, ctxt_len=512
):
seg_encodings = [tokenizer(seg["text"], return_tensors="pt") for seg in segments]
input_ids = [enc.input_ids.to(device) for enc in seg_encodings]
seg_lens = [x.shape[1] for x in input_ids]
cat_input_ids = torch.cat(input_ids, axis=1)
end = 0
seg_nlls = []
n = cat_input_ids.shape[1]
for i, seg_len in enumerate(seg_lens):
end = min(n, end + seg_len)
start = max(0, end - ctxt_len)
ctxt_ids = cat_input_ids[:, start:end]
target_ids = ctxt_ids.clone()
target_ids[:, :-seg_len] = -100
avg_nll = llm(ctxt_ids, labels=target_ids).loss.detach().numpy()
nll = avg_nll * seg_len
seg_nlls.append(nll)
seg_nlls = np.array(seg_nlls)
info_densities = seg_nlls / seg_durations
return info_densities
def smooth_info_densities(info_densities, seg_durations, max_leaf_nodes, min_sec_leaf):
min_samples_leaf = int(np.ceil(min_sec_leaf / np.mean(seg_durations)))
tree = DecisionTreeRegressor(
max_leaf_nodes=max_leaf_nodes, min_samples_leaf=min_samples_leaf
)
X = np.arange(0, len(info_densities), 1)[:, np.newaxis]
tree.fit(X, info_densities)
smoothed_info_densities = tree.predict(X)
return smoothed_info_densities
def squash_segs(segments, info_densities):
start = segments[0]["start"]
end = None
seg_times = []
seg_densities = [info_densities[0]]
for i in range(1, len(segments)):
curr_density = info_densities[i]
if curr_density != info_densities[i - 1]:
seg = segments[i]
seg_start = seg["start"]
seg_times.append((start, seg_start))
seg_densities.append(curr_density)
start = seg_start
seg_times.append((start, segments[-1]["end"]))
return seg_times, seg_densities
def compute_speedups(info_densities):
avg_density = np.mean(info_densities)
speedups = avg_density / info_densities
return speedups
def compute_actual_speedup(durations, speedups, total_duration):
spedup_durations = durations / speedups
spedup_total_duration = spedup_durations.sum()
actual_speedup_factor = total_duration / spedup_total_duration
return spedup_total_duration, actual_speedup_factor
def postprocess_speedups(
speedups, factor, min_speedup, max_speedup, durations, total_duration, thresh=0.01
):
assert min_speedup <= factor and factor <= max_speedup
tuned_factor = np.array([factor / 10, factor * 10])
actual_speedup_factor = None
while (
actual_speedup_factor is None
or abs(actual_speedup_factor - factor) / factor > thresh
):
mid = tuned_factor.mean()
tuned_speedups = speedups * mid
tuned_speedups = np.round(tuned_speedups, decimals=2)
tuned_speedups = np.clip(tuned_speedups, min_speedup, max_speedup)
_, actual_speedup_factor = compute_actual_speedup(
durations, tuned_speedups, total_duration
)
tuned_factor[0 if actual_speedup_factor < factor else 1] = mid
return tuned_speedups
def cat_clips(seg_times, speedups, audio_path, output_path):
if os.path.exists(output_path):
os.remove(output_path)
in_file = ffmpeg.input(audio_path)
segs = []
for (start, end), speedup in zip(seg_times, speedups):
seg = in_file.filter("atrim", start=start, end=end).filter("atempo", speedup)
segs.append(seg)
cat = ffmpeg.concat(*segs, v=0, a=1)
cat.output(output_path).run()
def format_duration(duration):
s = duration % 60
m = duration // 60
h = m // 60
return "%02d:%02d:%02d" % (h, m, s)
def strike(url, speedup_factor, min_speedup, max_speedup, max_num_segments):
min_speedup = max(0.5, min_speedup) # ffmpeg limit
name = download(url, YDL_OPTS)
assert name.endswith(".m4a")
name = name.split(".m4a")[0].split("/")[-1]
audio_path = os.path.join(DATA_DIR, "%s.mp3" % name)
transcript_path = os.path.join(DATA_DIR, "%s.json" % name)
output_path = os.path.join(DATA_DIR, "%s_smooth.mp3" % name)
segments = transcribe(audio_path, transcript_path)
seg_durations = compute_seg_durations(segments)
info_densities = compute_info_densities(
segments, seg_durations, llm, tokenizer, device
)
total_duration = segments[-1]["end"] - segments[0]["start"]
min_sec_leaf = total_duration / max_num_segments
smoothed_info_densities = smooth_info_densities(
info_densities, seg_durations, max_num_segments, min_sec_leaf
)
squashed_times, squashed_densities = squash_segs(segments, smoothed_info_densities)
squashed_durations = np.array([end - start for start, end in squashed_times])
speedups = compute_speedups(squashed_densities)
speedups = postprocess_speedups(
speedups,
speedup_factor,
min_speedup,
max_speedup,
squashed_durations,
total_duration,
)
cat_clips(squashed_times, speedups, audio_path, output_path)
spedup_total_duration, actual_speedup_factor = compute_actual_speedup(
squashed_durations, speedups, total_duration
)
st.write("original duration: %s" % format_duration(total_duration))
st.write("new duration: %s" % format_duration(spedup_total_duration))
st.write("speedup: %0.2f" % actual_speedup_factor)
times = np.array([(seg["start"] + seg["end"]) / 2 for seg in segments])
times /= 60
annotations = [seg["text"] for seg in segments]
data = [times, info_densities / np.log(2), annotations]
cols = ["time (minutes)", "bits per second", "transcript"]
df = pd.DataFrame(list(zip(*data)), columns=cols)
lines = (
alt.Chart(df, title="information rate")
.mark_line(color="gray", opacity=0.5)
.encode(
x=cols[0],
y=cols[1],
)
)
dots = (
alt.Chart(df)
.mark_circle(size=50, opacity=1)
.encode(x=cols[0], y=cols[1], tooltip=["transcript"])
)
st.altair_chart((lines + dots).interactive(), use_container_width=True)
times = sum([list(x) for x in squashed_times], [])
times = np.array(times)
times /= 60
data = [times, np.repeat(speedups, 2)]
cols = ["time (minutes)", "speedup"]
df = pd.DataFrame(list(zip(*data)), columns=cols)
min_actual_speedups = min(speedups)
max_actual_speedups = max(speedups)
eps = 0.1
lines = (
alt.Chart(df, title="speedup based on information rate")
.mark_line()
.encode(
x=cols[0],
y=alt.Y(
cols[1],
scale=alt.Scale(
domain=(min_actual_speedups - eps, max_actual_speedups + eps)
),
),
)
)
st.altair_chart(lines.interactive(), use_container_width=True)
return output_path
with st.form("my_form"):
url = st.text_input(
"youtube url", value="https://www.youtube.com/watch?v=_3MBQm7GFIM"
)
speedup_factor = st.slider("speedup", min_value=1.0, max_value=10.0, value=1.5)
min_speedup = 1
max_speedup = st.slider("maximum speedup", min_value=1.0, max_value=10.0, value=2.0)
speedup_factor = min(speedup_factor, max_speedup)
max_num_segments = st.slider(
"variance in speedup over time", min_value=2, max_value=100, value=20
)
submitted = st.form_submit_button("submit")
if submitted:
st.write("original video:")
st.video(url)
with st.spinner("processing audio..."):
output_path = strike(
url, speedup_factor, min_speedup, max_speedup, max_num_segments
)
st.write("processed audio:")
st.audio(output_path)
|