ejschwartz commited on
Commit
feeebdc
·
1 Parent(s): 7cbd81a
Files changed (3) hide show
  1. Dockerfile +3 -1
  2. main.py +3 -15
  3. requirements.txt +0 -3
Dockerfile CHANGED
@@ -1,7 +1,9 @@
1
  # read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
2
  # you will also find guides on how best to write your Dockerfile
3
 
4
- FROM python:3.9
 
 
5
 
6
  WORKDIR /code
7
 
 
1
  # read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
2
  # you will also find guides on how best to write your Dockerfile
3
 
4
+ FROM dnxie/resym
5
+
6
+ RUN git clone https://github.com/lt-asset/resym /home/ReSym
7
 
8
  WORKDIR /code
9
 
main.py CHANGED
@@ -1,26 +1,14 @@
1
  import gradio as gr
2
- import torch
3
- import requests
4
- from torchvision import transforms
5
-
6
- model = torch.hub.load("pytorch/vision:v0.6.0", "resnet18", pretrained=True).eval()
7
- response = requests.get("https://git.io/JJkYN")
8
- labels = response.text.split("\n")
9
-
10
 
11
  def predict(inp):
12
- inp = transforms.ToTensor()(inp).unsqueeze(0)
13
- with torch.no_grad():
14
- prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
15
- confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
16
- return confidences
17
 
18
 
19
  def run():
20
  demo = gr.Interface(
21
  fn=predict,
22
- inputs=gr.Image(type="pil"),
23
- outputs=gr.Label(num_top_classes=3),
24
  )
25
 
26
  demo.launch(server_name="0.0.0.0", server_port=7860)
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
2
 
3
  def predict(inp):
4
+ return "Hi"
 
 
 
 
5
 
6
 
7
  def run():
8
  demo = gr.Interface(
9
  fn=predict,
10
+ inputs=gr.Text,
11
+ outputs=gr.Text,
12
  )
13
 
14
  demo.launch(server_name="0.0.0.0", server_port=7860)
requirements.txt CHANGED
@@ -1,4 +1 @@
1
  gradio
2
- torch
3
- torchvision
4
- requests
 
1
  gradio