Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_client import Client | |
from gradio_client.exceptions import AppError | |
import frontmatter | |
import os | |
import spaces | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import huggingface_hub | |
import prep_decompiled | |
hf_key = os.environ["HF_TOKEN"] | |
huggingface_hub.login(token=hf_key) | |
tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoderbase-3b") | |
vardecoder_model = AutoModelForCausalLM.from_pretrained( | |
"ejschwartz/resym-vardecoder", torch_dtype=torch.bfloat16 | |
).to("cuda") | |
fielddecoder_model = AutoModelForCausalLM.from_pretrained( | |
"ejschwartz/resym-fielddecoder", torch_dtype=torch.bfloat16 | |
).to("cuda") | |
gradio_client = Client("https://ejschwartz-resym-field-helper.hf.space/") | |
examples = [ | |
ex.encode().decode("unicode_escape") for ex in open("examples.txt", "r").readlines() | |
] | |
# Example prompt | |
# "input": "```\n_BOOL8 __fastcall sub_409B9A(_QWORD *a1, _QWORD *a2)\n{\nreturn *a1 < *a2 || *a1 == *a2 && a1[1] < a2[1];\n}\n```\nWhat are the variable name and type for the following memory accesses:a1, a1[1], a2, a2[1]?\n", | |
# "output": "a1: a, os_reltime* -> sec, os_time_t\na1[1]: a, os_reltime* -> usec, os_time_t\na2: b, os_reltime* -> sec, os_time_t\na2[1]: b, os_reltime* -> usec, os_time_t", | |
def field_prompt(code): | |
try: | |
field_helper_result = gradio_client.predict( | |
decompiled_code=code, | |
api_name="/predict", | |
) | |
except AppError as e: | |
print(f"AppError: {e}") | |
return None, [], None | |
print(f"field helper result: {field_helper_result}") | |
fields = sorted(list(set([e['expr'] for e in field_helper_result[0] if e['expr'] != '']))) | |
print(f"fields: {fields}") | |
prompt = f"```\n{code}\n```\nWhat are the variable name and type for the following memory accesses:{', '.join(fields)}?\n" | |
if len(fields) > 0: | |
prompt += f"{fields[0]}:" | |
print(f"field prompt: {repr(prompt)}") | |
return prompt, fields, field_helper_result | |
def infer(code): | |
splitcode = code.splitlines() | |
#splitcode = [s.strip() for s in code.splitlines()] | |
#code = "\n".join(splitcode) | |
bodyvars = [ | |
v["name"] for v in prep_decompiled.extract_comments(splitcode) if "name" in v | |
] | |
argvars = [ | |
v["name"] for v in prep_decompiled.parse_signature(splitcode) if "name" in v | |
] | |
vars = argvars + bodyvars | |
# comments = prep_decompiled.extract_comments(splitcode) | |
# sig = prep_decompiled.parse_signature(splitcode) | |
# print(f"vars {vars}") | |
varstring = ", ".join([f"`{v}`" for v in vars]) | |
first_var = vars[0] | |
# ejs: Yeah, this var_name thing is really bizarre. But look at https://github.com/lt-asset/resym/blob/main/training_src/fielddecoder_inf.py | |
var_prompt = f"What are the original name and data types of variables {varstring}?\n```\n{code}\n```{first_var}:" | |
print(f"Prompt:\n{repr(var_prompt)}") | |
var_input_ids = tokenizer.encode(var_prompt, return_tensors="pt").cuda()[ | |
:, : 8192 - 1024 | |
] | |
var_output = vardecoder_model.generate( | |
input_ids=var_input_ids, | |
max_new_tokens=1024, | |
num_beams=4, | |
num_return_sequences=1, | |
do_sample=False, | |
early_stopping=False, | |
pad_token_id=0, | |
eos_token_id=0, | |
)[0] | |
var_output = tokenizer.decode( | |
var_output[var_input_ids.size(1) :], | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True, | |
) | |
field_prompt_result, fields, field_helper_result = field_prompt(code) | |
if len(fields) == 0: | |
field_output = "Failed to parse fields" if field_prompt_result is None else "No fields" | |
else: | |
field_input_ids = tokenizer.encode(field_prompt_result, return_tensors="pt").cuda()[ | |
:, : 8192 - 1024 | |
] | |
field_output = fielddecoder_model.generate( | |
input_ids=field_input_ids, | |
max_new_tokens=1024, | |
num_beams=4, | |
num_return_sequences=1, | |
do_sample=False, | |
early_stopping=False, | |
pad_token_id=0, | |
eos_token_id=0, | |
)[0] | |
field_output = tokenizer.decode( | |
field_output[field_input_ids.size(1) :], | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True, | |
) | |
field_output = fields[0] + ":" + field_output | |
var_output = first_var + ":" + var_output | |
fieldstring = ", ".join(fields) | |
return var_output, field_output, varstring, fieldstring | |
demo = gr.Interface( | |
fn=infer, | |
inputs=[ | |
gr.Textbox(lines=10, value=examples[0], label="Hex-Rays Decompilation"), | |
], | |
outputs=[ | |
gr.Text(label="Var Decoder Output"), | |
gr.Text(label="Field Decoder Output"), | |
gr.Text(label="Generated Variable List"), | |
gr.Text(label="Generated Field Access List"), | |
], | |
# description=frontmatter.load("README.md").content, | |
description="""This is a test space of the models from the [ReSym | |
artifacts](https://github.com/lt-asset/resym). For more information, please see | |
[the README](https://huggingface.co/spaces/ejschwartz/resym/blob/main/README.md).""", | |
examples=examples, | |
) | |
demo.launch() | |