ejschwartz commited on
Commit
f01d69f
·
1 Parent(s): 21e158f

Disable spaces

Browse files
Files changed (1) hide show
  1. app.py +8 -33
app.py CHANGED
@@ -3,7 +3,7 @@ from gradio_client import Client
3
  from gradio_client.exceptions import AppError
4
  import frontmatter
5
  import os
6
- import spaces
7
  import torch
8
  import logging
9
  from transformers import AutoTokenizer, AutoModelForCausalLM
@@ -51,43 +51,18 @@ print(f"Model dtype: {next(vardecoder_model.parameters()).dtype}")
51
  print(f"Model is meta: {next(vardecoder_model.parameters()).is_meta}")
52
  print(f"Model parameters: {sum(p.numel() for p in vardecoder_model.parameters() if p.requires_grad):,}")
53
 
54
- # Check if parameters actually have data
55
- sample_param = next(vardecoder_model.parameters())
56
- print(f"Sample parameter shape: {sample_param.shape}")
57
- print(f"Sample parameter requires_grad: {sample_param.requires_grad}")
58
- print(f"Sample parameter data type: {type(sample_param.data)}")
59
- #print(f"Sample parameter storage: {sample_param.storage()}")
60
-
61
  # Check memory after first model
62
  print(f"GPU memory after vardecoder:")
63
  print(f"Allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
64
  print(f"Reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
65
 
66
- # Try manual memory allocation test
67
- test_tensor = torch.randn(1000, 1000, dtype=torch.bfloat16, device='cuda')
68
- print(f"GPU memory after test tensor:")
69
- print(f"Allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
70
- print(f"Reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
71
- del test_tensor
72
- torch.cuda.empty_cache()
73
-
74
- # Add more detailed debugging before loading the second model
75
- try:
76
- logger.info("Loading fielddecoder model...")
77
- print(f"CUDA available: {torch.cuda.is_available()}")
78
- print(f"CUDA device count: {torch.cuda.device_count()}")
79
- print(f"Current device: {torch.cuda.current_device()}")
80
- print(f"Device name: {torch.cuda.get_device_name()}")
81
-
82
- fielddecoder_model = AutoModelForCausalLM.from_pretrained(
83
- "ejschwartz/resym-fielddecoder",
84
- torch_dtype=torch.bfloat16,
85
- )
86
- logger.info("Successfully loaded fielddecoder model")
87
- except Exception as e:
88
- logger.error(f"Error loading fielddecoder model: {e}")
89
- import traceback
90
- logger.error(traceback.format_exc())
91
 
92
  make_gradio_client = lambda: Client("https://ejschwartz-resym-field-helper.hf.space/")
93
 
 
3
  from gradio_client.exceptions import AppError
4
  import frontmatter
5
  import os
6
+ #import spaces
7
  import torch
8
  import logging
9
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
51
  print(f"Model is meta: {next(vardecoder_model.parameters()).is_meta}")
52
  print(f"Model parameters: {sum(p.numel() for p in vardecoder_model.parameters() if p.requires_grad):,}")
53
 
 
 
 
 
 
 
 
54
  # Check memory after first model
55
  print(f"GPU memory after vardecoder:")
56
  print(f"Allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
57
  print(f"Reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
58
 
59
+ logger.info("Loading fielddecoder model...")
60
+
61
+ fielddecoder_model = AutoModelForCausalLM.from_pretrained(
62
+ "ejschwartz/resym-fielddecoder",
63
+ torch_dtype=torch.bfloat16,
64
+ )
65
+ logger.info("Successfully loaded fielddecoder model")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  make_gradio_client = lambda: Client("https://ejschwartz-resym-field-helper.hf.space/")
68