house_md_bot / utils /func.py
ekaterinatao's picture
Update utils/func.py
f4a73c5 verified
import torch
import faiss
import numpy as np
import datasets
from transformers import AutoTokenizer, AutoModel
from config_data.config import Config, load_config
config: Config = load_config()
def embed_bert_cls(
text: str,
model: AutoModel,
tokenizer: AutoTokenizer
) -> np.ndarray:
t = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**{k: v.to(model.device) for k, v in t.items()})
embeds = model_output.last_hidden_state[:, 0, :]
embeds = torch.nn.functional.normalize(embeds)
return embeds[0].cpu().numpy()
def get_ranked_docs(
query: str, vec_query_base: np.ndarray, data: datasets,
bi_model: AutoModel, bi_tok: AutoTokenizer,
cross_model: AutoModel, cross_tok: AutoTokenizer
) -> str:
vec_shape = vec_query_base.shape[1]
index = faiss.IndexFlatL2(vec_shape)
index.add(vec_query_base)
xq = embed_bert_cls(query, bi_model, bi_tok)
_, I = index.search(xq.reshape(1, vec_shape), 50) # corpus contains 50 similar queries
corpus = [data[int(i)]['answer'] for i in I[0]]
queries = [query] * len(corpus)
tokenized_texts = cross_tok(
queries, corpus, max_length=128, padding=True, truncation=True, return_tensors="pt"
).to(config.model.device)
with torch.no_grad():
model_output = cross_model(
**{k: v.to(cross_model.device) for k, v in tokenized_texts.items()}
)
ce_scores = model_output.last_hidden_state[:, 0, :]
ce_scores = np.matmul(ce_scores, ce_scores.T)
scores = ce_scores.cpu().numpy()
scores_ix = np.argsort(scores)[::-1]
return corpus[scores_ix[0][0]]
def load_dataset(url: str=config.data.dataset) -> datasets:
dataset = datasets.load_dataset(url, split='train')
house_dataset = dataset.filter(lambda row: row['labels'] == 0)
return house_dataset
def load_cls_base(url: str=config.data.cls_vec) -> np.array:
cls_dataset = datasets.load_dataset(url, split='train')
cls_base = np.stack([embed['cls_embeds'] for embed in cls_dataset])
return cls_base
def load_bi_enc_model(
checkpoint: str=config.model.bi_checkpoint
) -> tuple[AutoTokenizer, AutoModel]:
bi_model = AutoModel.from_pretrained(checkpoint)
bi_tok = AutoTokenizer.from_pretrained(checkpoint)
return bi_model, bi_tok
def load_cross_enc_model(
checkpoint: str=config.model.cross_checkpoint
) -> tuple[AutoTokenizer, AutoModel]:
cross_model = AutoModel.from_pretrained(checkpoint)
cross_tok = AutoTokenizer.from_pretrained(checkpoint)
return cross_model, cross_tok