Spaces:
Sleeping
Sleeping
import torch | |
import faiss | |
import numpy as np | |
import datasets | |
from transformers import AutoTokenizer, AutoModel | |
from config_data.config import Config, load_config | |
config: Config = load_config() | |
def embed_bert_cls( | |
text: str, | |
model: AutoModel, | |
tokenizer: AutoTokenizer | |
) -> np.ndarray: | |
t = tokenizer(text, padding=True, truncation=True, return_tensors='pt') | |
with torch.no_grad(): | |
model_output = model(**{k: v.to(model.device) for k, v in t.items()}) | |
embeds = model_output.last_hidden_state[:, 0, :] | |
embeds = torch.nn.functional.normalize(embeds) | |
return embeds[0].cpu().numpy() | |
def get_ranked_docs( | |
query: str, vec_query_base: np.ndarray, data: datasets, | |
bi_model: AutoModel, bi_tok: AutoTokenizer, | |
cross_model: AutoModel, cross_tok: AutoTokenizer | |
) -> str: | |
vec_shape = vec_query_base.shape[1] | |
index = faiss.IndexFlatL2(vec_shape) | |
index.add(vec_query_base) | |
xq = embed_bert_cls(query, bi_model, bi_tok) | |
_, I = index.search(xq.reshape(1, vec_shape), 50) # corpus contains 50 similar queries | |
corpus = [data[int(i)]['answer'] for i in I[0]] | |
queries = [query] * len(corpus) | |
tokenized_texts = cross_tok( | |
queries, corpus, max_length=128, padding=True, truncation=True, return_tensors="pt" | |
).to(config.model.device) | |
with torch.no_grad(): | |
model_output = cross_model( | |
**{k: v.to(cross_model.device) for k, v in tokenized_texts.items()} | |
) | |
ce_scores = model_output.last_hidden_state[:, 0, :] | |
ce_scores = np.matmul(ce_scores, ce_scores.T) | |
scores = ce_scores.cpu().numpy() | |
scores_ix = np.argsort(scores)[::-1] | |
return corpus[scores_ix[0][0]] | |
def load_dataset(url: str=config.data.dataset) -> datasets: | |
dataset = datasets.load_dataset(url, split='train') | |
house_dataset = dataset.filter(lambda row: row['labels'] == 0) | |
return house_dataset | |
def load_cls_base(url: str=config.data.cls_vec) -> np.array: | |
cls_dataset = datasets.load_dataset(url, split='train') | |
cls_base = np.stack([embed['cls_embeds'] for embed in cls_dataset]) | |
return cls_base | |
def load_bi_enc_model( | |
checkpoint: str=config.model.bi_checkpoint | |
) -> tuple[AutoTokenizer, AutoModel]: | |
bi_model = AutoModel.from_pretrained(checkpoint) | |
bi_tok = AutoTokenizer.from_pretrained(checkpoint) | |
return bi_model, bi_tok | |
def load_cross_enc_model( | |
checkpoint: str=config.model.cross_checkpoint | |
) -> tuple[AutoTokenizer, AutoModel]: | |
cross_model = AutoModel.from_pretrained(checkpoint) | |
cross_tok = AutoTokenizer.from_pretrained(checkpoint) | |
return cross_model, cross_tok |