File size: 20,653 Bytes
af720c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
from typing import Callable, List, Tuple, Dict
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
def sum_tensor(inp: torch.Tensor, axes: int | List[int], keepdim: bool = False) -> torch.Tensor:
axes = np.unique(axes).astype(int)
if keepdim:
for ax in axes:
inp = inp.sum(int(ax), keepdim=True)
else:
for ax in sorted(axes, reverse=True):
inp = inp.sum(int(ax))
return inp
def get_tp_fp_fn(net_output: torch.Tensor, gt: torch.Tensor, axes: int | Tuple[int, ...] | None = None, mask: torch.Tensor | None = None, square: bool = False) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
if axes is None:
axes = tuple(range(2, len(net_output.size())))
shp_x = net_output.shape
shp_y = gt.shape
with torch.no_grad():
if len(shp_x) != len(shp_y):
gt = gt.view((shp_y[0], 1, *shp_y[1:]))
if all([i == j for i, j in zip(net_output.shape, gt.shape)]):
y_onehot = gt
else:
gt = gt.long()
y_onehot = torch.zeros(shp_x)
if net_output.device.type == "cuda":
y_onehot = y_onehot.cuda(net_output.device.index)
y_onehot.scatter_(1, gt, 1)
tp = net_output * y_onehot
fp = net_output * (1 - y_onehot)
fn = (1 - net_output) * y_onehot
if mask is not None:
tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1)
fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1)
fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1)
if square:
tp = tp ** 2
fp = fp ** 2
fn = fn ** 2
tp = sum_tensor(tp, axes, keepdim=False)
fp = sum_tensor(fp, axes, keepdim=False)
fn = sum_tensor(fn, axes, keepdim=False)
return tp, fp, fn
def softmax_helper(x: torch.Tensor) -> torch.Tensor:
rpt = [1 for _ in range(len(x.size()))]
rpt[1] = x.size(1)
x_max = x.max(1, keepdim=True)[0].repeat(*rpt)
e_x = torch.exp(x - x_max)
return e_x / e_x.sum(1, keepdim=True).repeat(*rpt)
def flatten(tensor: torch.Tensor) -> torch.Tensor:
C = tensor.size(1)
axis_order = (1, 0) + tuple(range(2, tensor.dim()))
transposed = tensor.permute(axis_order).contiguous()
return transposed.view(C, -1)
class SoftDiceLoss(nn.Module):
def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1.0, square: bool = True) -> None:
super().__init__()
self.square = square
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor:
shp_x = x.shape
if self.batch_dice:
axes = [0] + list(range(2, len(shp_x)))
else:
axes = list(range(2, len(shp_x)))
if self.apply_nonlin is not None:
x = self.apply_nonlin(x)
tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square)
dc = (2 * tp + self.smooth) / (2 * tp + fp + fn + self.smooth)
if not self.do_bg:
if self.batch_dice:
dc = dc[1:]
else:
dc = dc[:, 1:]
dc = dc.mean()
return -dc
class SoftDiceLoss_v2(nn.Module):
def __init__(self, smooth: float = 1.0) -> None:
super().__init__()
self.smooth = smooth
def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
probs = F.softmax(logits, dim=1)
targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float()
intersection = torch.sum(probs * targets, dim=(0, 2, 3))
union = torch.sum(probs + targets, dim=(0, 2, 3))
dl = 1 - (2.0 * intersection + self.smooth) / (union + self.smooth)
dice_loss = torch.mean(dl)
return dice_loss
class SSLoss(nn.Module):
def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None:
super().__init__()
self.square = square
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
self.r = 0.1
def forward(self, net_output: torch.Tensor, gt: torch.Tensor) -> torch.Tensor:
shp_x = net_output.shape
shp_y = gt.shape
with torch.no_grad():
if len(shp_x) != len(shp_y):
gt = gt.view((shp_y[0], 1, *shp_y[1:]))
if all([i == j for i, j in zip(net_output.shape, gt.shape)]):
y_onehot = gt
else:
gt = gt.long()
y_onehot = torch.zeros(shp_x)
if net_output.device.type == "cuda":
y_onehot = y_onehot.cuda(net_output.device.index)
y_onehot.scatter_(1, gt, 1)
if self.batch_dice:
axes = [0] + list(range(2, len(shp_x)))
else:
axes = list(range(2, len(shp_x)))
if self.apply_nonlin is not None:
net_output = self.apply_nonlin(net_output)
bg_onehot = 1 - y_onehot
squared_error = (y_onehot - net_output)**2
specificity_part = sum_tensor(squared_error*y_onehot, axes)/(sum_tensor(y_onehot, axes)+self.smooth)
sensitivity_part = sum_tensor(squared_error*bg_onehot, axes)/(sum_tensor(bg_onehot, axes)+self.smooth)
ss = self.r * specificity_part + (1-self.r) * sensitivity_part
if not self.do_bg:
if self.batch_dice:
ss = ss[1:]
else:
ss = ss[:, 1:]
ss = ss.mean()
return ss
class SSLoss_v2(nn.Module):
def __init__(self, alpha: float = 0.5) -> None:
super().__init__()
self.alpha = alpha
def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
probs = F.softmax(logits, dim=1)
targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float()
intersection = torch.sum(probs * targets, dim=(0, 2, 3))
cardinality = torch.sum(probs + targets, dim=(0, 2, 3))
dice_loss = 1 - (2.0 * intersection + 1e-6) / (cardinality + 1e-6)
ce_loss = F.cross_entropy(probs, targets, reduction='mean')
loss = 0.5 * dice_loss.mean() + (1 - 0.5) * ce_loss
return loss
class IoULoss(nn.Module):
def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None:
super().__init__()
self.square = square
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor:
shp_x = x.shape
if self.batch_dice:
axes = [0] + list(range(2, len(shp_x)))
else:
axes = list(range(2, len(shp_x)))
if self.apply_nonlin is not None:
x = self.apply_nonlin(x)
tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square)
iou = (tp + self.smooth) / (tp + fp + fn + self.smooth)
if not self.do_bg:
if self.batch_dice:
iou = iou[1:]
else:
iou = iou[:, 1:]
iou = iou.mean()
return -iou
class IoULoss_v2(nn.Module):
def __init__(self, smooth: float = 1.0) -> None:
super().__init__()
self.smooth = smooth
def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
probs = F.softmax(logits, dim=1)
targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float()
intersection = torch.sum(probs * targets, dim=(0, 2, 3))
union = torch.sum(probs + targets, dim=(0, 2, 3)) - intersection
iou = 1 - (intersection + self.smooth) / (union + self.smooth)
iou_loss = torch.mean(iou)
return iou_loss
class TverskyLoss(nn.Module):
def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None:
super().__init__()
self.square = square
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
self.alpha = 0.3
self.beta = 0.7
def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor:
shp_x = x.shape
if self.batch_dice:
axes = [0] + list(range(2, len(shp_x)))
else:
axes = list(range(2, len(shp_x)))
if self.apply_nonlin is not None:
x = self.apply_nonlin(x)
tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square)
tversky = (tp + self.smooth) / (tp + self.alpha*fp + self.beta*fn + self.smooth)
if not self.do_bg:
if self.batch_dice:
tversky = tversky[1:]
else:
tversky = tversky[:, 1:]
tversky = tversky.mean()
return -tversky
class TverskyLoss_v2(nn.Module):
def __init__(self, alpha: float = 0.5, beta: float = 0.5, smooth: float = 1.0) -> None:
super().__init__()
self.alpha = alpha
self.beta = beta
self.smooth = smooth
def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
probs = F.softmax(logits, dim=1)
targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float()
tp = torch.sum(probs * targets, dim=(0, 2, 3))
fp = torch.sum((1 - targets) * probs, dim=(0, 2, 3))
fn = torch.sum(targets * (1 - probs), dim=(0, 2, 3))
tversky = 1 - (tp + self.smooth) / (tp + self.alpha * fp + self.beta * fn + self.smooth)
tversky_loss = torch.mean(tversky)
return tversky_loss
class FocalTversky_loss(nn.Module):
def __init__(self, tversky_kwargs: Dict, gamma: float = 0.75) -> None:
super().__init__()
self.gamma = gamma
self.tversky = TverskyLoss(**tversky_kwargs)
def forward(self, net_output: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
tversky_loss = 1 + self.tversky(net_output, target)
focal_tversky = torch.pow(tversky_loss, self.gamma)
return focal_tversky
class FocalTversky_loss_v2(nn.Module):
def __init__(self, alpha: float = 0.5, beta: float = 0.5, gamma: float = 1.5, smooth: float = 1.0) -> None:
super().__init__()
self.alpha = alpha
self.beta = beta
self.gamma = gamma
self.smooth = smooth
def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
probs = F.softmax(logits, dim=1)
targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float()
tp = torch.sum(probs * targets, dim=(0, 2, 3))
fp = torch.sum((1 - targets) * probs, dim=(0, 2, 3))
fn = torch.sum(targets * (1 - probs), dim=(0, 2, 3))
focal_tversky = (1 - (tp + self.smooth) / (tp + self.alpha * fp + self.beta * fn + self.smooth)) ** self.gamma
focal_tversky_loss = torch.mean(focal_tversky)
return focal_tversky_loss
class AsymLoss(nn.Module):
def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None:
super().__init__()
self.square = square
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
self.beta = 1.5
def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor:
shp_x = x.shape
if self.batch_dice:
axes = [0] + list(range(2, len(shp_x)))
else:
axes = list(range(2, len(shp_x)))
if self.apply_nonlin is not None:
x = self.apply_nonlin(x)
tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square)
weight = (self.beta**2)/(1+self.beta**2)
asym = (tp + self.smooth) / (tp + weight*fn + (1-weight)*fp + self.smooth)
if not self.do_bg:
if self.batch_dice:
asym = asym[1:]
else:
asym = asym[:, 1:]
asym = asym.mean()
return -asym
class AsymLoss_v2(nn.Module):
def __init__(self, alpha: float = 0.5, gamma: float = 2.0, smooth: float = 1e-5) -> None:
super().__init__()
self.alpha = alpha
self.gamma = gamma
self.smooth = smooth
def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
probs = F.softmax(logits, dim=1)
targets_one_hot = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float()
pos_loss = -self.alpha * (1 - probs) ** self.gamma * targets_one_hot * torch.log(probs + self.smooth)
neg_loss = -(1 - self.alpha) * probs ** self.gamma * (1 - targets_one_hot) * torch.log(1 - probs + self.smooth)
loss = pos_loss + neg_loss
return loss.mean()
class ExpLog_loss(nn.Module):
def __init__(self, soft_dice_kwargs: Dict, wce_kwargs: Dict, gamma: float = 0.3) -> None:
super().__init__()
self.wce = WeightedCrossEntropyLoss(**wce_kwargs)
self.dc = SoftDiceLoss_v2(**soft_dice_kwargs)
self.gamma = gamma
def forward(self, net_output: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
dc_loss = -self.dc(net_output, target)
wce_loss = self.wce(net_output, target)
explog_loss = 0.8*torch.pow(-torch.log(torch.clamp(dc_loss, 1e-6)), self.gamma) + 0.2*wce_loss
return explog_loss
class FocalLoss(nn.Module):
def __init__(self, apply_nonlin: Callable | None = softmax_helper, alpha: float | List[float] | np.ndarray | None = None, gamma: int = 2, balance_index: int = 0, smooth: float = 1e-4, size_average: bool = True) -> None:
super().__init__()
self.apply_nonlin = apply_nonlin
self.alpha = alpha
self.gamma = gamma
self.balance_index = balance_index
self.smooth = smooth
self.size_average = size_average
if self.smooth is not None:
if self.smooth < 0 or self.smooth > 1.0:
raise ValueError("smooth value should be in [0,1]")
def forward(self, logit: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
if self.apply_nonlin is not None:
logit = self.apply_nonlin(logit)
num_class = logit.shape[1]
if logit.dim() > 2:
logit = logit.view(logit.size(0), logit.size(1), -1)
logit = logit.permute(0, 2, 1).contiguous()
logit = logit.view(-1, logit.size(-1))
target = torch.squeeze(target, 1)
target = target.view(-1, 1)
alpha = self.alpha
if alpha is None:
alpha = torch.ones(num_class, 1)
elif isinstance(alpha, (list, np.ndarray)):
assert len(alpha) == num_class
alpha = torch.FloatTensor(alpha).view(num_class, 1)
alpha = alpha / alpha.sum()
elif isinstance(alpha, float):
alpha = torch.ones(num_class, 1)
alpha = alpha * (1 - self.alpha)
alpha[self.balance_index] = self.alpha
else:
raise TypeError("Not support alpha type")
if alpha.device != logit.device:
alpha = alpha.to(logit.device)
idx = target.cpu().long()
one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_()
one_hot_key = one_hot_key.scatter_(1, idx, 1)
if one_hot_key.device != logit.device:
one_hot_key = one_hot_key.to(logit.device)
if self.smooth:
one_hot_key = torch.clamp(
one_hot_key, self.smooth/(num_class-1), 1.0 - self.smooth)
pt = (one_hot_key * logit).sum(1) + self.smooth
logpt = pt.log()
gamma = self.gamma
alpha = alpha[idx]
alpha = torch.squeeze(alpha)
loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt
if self.size_average:
loss = loss.mean()
else:
loss = loss.sum()
return loss
def lovasz_grad(gt_sorted: torch.Tensor) -> torch.Tensor:
p = len(gt_sorted)
gts = gt_sorted.sum()
intersection = gts - gt_sorted.float().cumsum(0)
union = gts + (1 - gt_sorted).float().cumsum(0)
jaccard = 1. - intersection / union
if p > 1:
jaccard[1:p] = jaccard[1:p] - jaccard[0:-1]
return jaccard
class LovaszSoftmax(nn.Module):
def __init__(self, reduction: str = "mean") -> None:
super().__init__()
self.reduction = reduction
def prob_flatten(self, input: torch.Tensor, target: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
assert input.dim() in [4, 5]
num_class = input.size(1)
if input.dim() == 4:
input = input.permute(0, 2, 3, 1).contiguous()
input_flatten = input.view(-1, num_class)
elif input.dim() == 5:
input = input.permute(0, 2, 3, 4, 1).contiguous()
input_flatten = input.view(-1, num_class)
target_flatten = target.view(-1)
return input_flatten, target_flatten
def lovasz_softmax_flat(self, inputs: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
num_classes = inputs.size(1)
losses = []
for c in range(num_classes):
target_c = (targets == c).float()
if num_classes == 1:
input_c = inputs[:, 0]
else:
input_c = inputs[:, c]
loss_c = (torch.autograd.Variable(target_c) - input_c).abs()
loss_c_sorted, loss_index = torch.sort(loss_c, 0, descending=True)
target_c_sorted = target_c[loss_index]
losses.append(torch.dot(loss_c_sorted, torch.autograd.Variable(lovasz_grad(target_c_sorted))))
losses = torch.stack(losses)
if self.reduction == "none":
loss = losses
elif self.reduction == "sum":
loss = losses.sum()
else:
loss = losses.mean()
return loss
def forward(self, inputs: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
inputs, targets = self.prob_flatten(inputs, targets)
losses = self.lovasz_softmax_flat(inputs, targets)
return losses
class TopKLoss(nn.Module):
def __init__(self, weight: torch.Tensor | None = None, ignore_index: int = -100, k: int = 10) -> None:
super().__init__()
self.k = k
self.cross_entropy = nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index, reduction="none")
def forward(self, inp: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
pixel_losses = self.cross_entropy(inp, target)
pixel_losses = pixel_losses.view(-1)
num_voxels = pixel_losses.numel()
res, _ = torch.topk(pixel_losses, int(num_voxels * self.k / 100), sorted=False)
return res.mean()
class WeightedCrossEntropyLoss(torch.nn.CrossEntropyLoss):
def __init__(self, weight: torch.Tensor | None = None) -> None:
super().__init__()
self.weight = weight
def forward(self, inp: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
target = target.long()
num_classes = inp.size()[1]
i0 = 1
i1 = 2
while i1 < len(inp.shape):
inp = inp.transpose(i0, i1)
i0 += 1
i1 += 1
inp = inp.contiguous()
inp = inp.view(-1, num_classes)
target = target.view(-1,)
wce_loss = torch.nn.CrossEntropyLoss(weight=self.weight)
return wce_loss(inp, target) |