File size: 20,653 Bytes
af720c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
from typing import Callable, List, Tuple, Dict
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np


def sum_tensor(inp: torch.Tensor, axes: int | List[int], keepdim: bool = False) -> torch.Tensor:
    axes = np.unique(axes).astype(int)
    if keepdim:
        for ax in axes:
            inp = inp.sum(int(ax), keepdim=True)
    else:
        for ax in sorted(axes, reverse=True):
            inp = inp.sum(int(ax))
    return inp


def get_tp_fp_fn(net_output: torch.Tensor, gt: torch.Tensor, axes: int | Tuple[int, ...] | None = None, mask: torch.Tensor | None = None, square: bool = False) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    if axes is None:
        axes = tuple(range(2, len(net_output.size())))
    shp_x = net_output.shape
    shp_y = gt.shape
    with torch.no_grad():
        if len(shp_x) != len(shp_y):
            gt = gt.view((shp_y[0], 1, *shp_y[1:]))
        if all([i == j for i, j in zip(net_output.shape, gt.shape)]):
            y_onehot = gt
        else:
            gt = gt.long()
            y_onehot = torch.zeros(shp_x)
            if net_output.device.type == "cuda":
                y_onehot = y_onehot.cuda(net_output.device.index)
            y_onehot.scatter_(1, gt, 1)
    tp = net_output * y_onehot
    fp = net_output * (1 - y_onehot)
    fn = (1 - net_output) * y_onehot
    if mask is not None:
        tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1)
        fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1)
        fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1)
    if square:
        tp = tp ** 2
        fp = fp ** 2
        fn = fn ** 2
    tp = sum_tensor(tp, axes, keepdim=False)
    fp = sum_tensor(fp, axes, keepdim=False)
    fn = sum_tensor(fn, axes, keepdim=False)
    return tp, fp, fn


def softmax_helper(x: torch.Tensor) -> torch.Tensor:
    rpt = [1 for _ in range(len(x.size()))]
    rpt[1] = x.size(1)
    x_max = x.max(1, keepdim=True)[0].repeat(*rpt)
    e_x = torch.exp(x - x_max)
    return e_x / e_x.sum(1, keepdim=True).repeat(*rpt)

def flatten(tensor: torch.Tensor) -> torch.Tensor:
    C = tensor.size(1)
    axis_order = (1, 0) + tuple(range(2, tensor.dim()))
    transposed = tensor.permute(axis_order).contiguous()
    return transposed.view(C, -1)


class SoftDiceLoss(nn.Module):
    def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1.0, square: bool = True) -> None:
        super().__init__()
        self.square = square
        self.do_bg = do_bg
        self.batch_dice = batch_dice
        self.apply_nonlin = apply_nonlin
        self.smooth = smooth

    def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor:
        shp_x = x.shape
        if self.batch_dice:
            axes = [0] + list(range(2, len(shp_x)))
        else:
            axes = list(range(2, len(shp_x)))
        if self.apply_nonlin is not None:
            x = self.apply_nonlin(x)
        tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square)
        dc = (2 * tp + self.smooth) / (2 * tp + fp + fn + self.smooth)
        if not self.do_bg:
            if self.batch_dice:
                dc = dc[1:]
            else:
                dc = dc[:, 1:]
        dc = dc.mean()
        return -dc


class SoftDiceLoss_v2(nn.Module):
    def __init__(self, smooth: float = 1.0) -> None:
        super().__init__()
        self.smooth = smooth
    
    def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
        probs = F.softmax(logits, dim=1)
        targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float()
        intersection = torch.sum(probs * targets, dim=(0, 2, 3))
        union = torch.sum(probs + targets, dim=(0, 2, 3))
        dl = 1 - (2.0 * intersection + self.smooth) / (union + self.smooth)
        dice_loss = torch.mean(dl)
        return dice_loss


class SSLoss(nn.Module):
    def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None:
        super().__init__()
        self.square = square
        self.do_bg = do_bg
        self.batch_dice = batch_dice
        self.apply_nonlin = apply_nonlin
        self.smooth = smooth
        self.r = 0.1

    def forward(self, net_output: torch.Tensor, gt: torch.Tensor) -> torch.Tensor:
        shp_x = net_output.shape
        shp_y = gt.shape
        with torch.no_grad():
            if len(shp_x) != len(shp_y):
                gt = gt.view((shp_y[0], 1, *shp_y[1:]))
            if all([i == j for i, j in zip(net_output.shape, gt.shape)]):
                y_onehot = gt
            else:
                gt = gt.long()
                y_onehot = torch.zeros(shp_x)
                if net_output.device.type == "cuda":
                    y_onehot = y_onehot.cuda(net_output.device.index)
                y_onehot.scatter_(1, gt, 1)
        if self.batch_dice:
            axes = [0] + list(range(2, len(shp_x)))
        else:
            axes = list(range(2, len(shp_x)))
        if self.apply_nonlin is not None:
            net_output = self.apply_nonlin(net_output)
        bg_onehot = 1 - y_onehot
        squared_error = (y_onehot - net_output)**2
        specificity_part = sum_tensor(squared_error*y_onehot, axes)/(sum_tensor(y_onehot, axes)+self.smooth)
        sensitivity_part = sum_tensor(squared_error*bg_onehot, axes)/(sum_tensor(bg_onehot, axes)+self.smooth)
        ss = self.r * specificity_part + (1-self.r) * sensitivity_part
        if not self.do_bg:
            if self.batch_dice:
                ss = ss[1:]
            else:
                ss = ss[:, 1:]
        ss = ss.mean()
        return ss


class SSLoss_v2(nn.Module):
    def __init__(self, alpha: float = 0.5) -> None:
        super().__init__()
        self.alpha = alpha
    
    def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
        probs = F.softmax(logits, dim=1)
        targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float()
        intersection = torch.sum(probs * targets, dim=(0, 2, 3))
        cardinality = torch.sum(probs + targets, dim=(0, 2, 3))
        dice_loss = 1 - (2.0 * intersection + 1e-6) / (cardinality + 1e-6)
        ce_loss = F.cross_entropy(probs, targets, reduction='mean')
        loss = 0.5 * dice_loss.mean() + (1 - 0.5) * ce_loss
        return loss


class IoULoss(nn.Module):
    def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None:
        super().__init__()
        self.square = square
        self.do_bg = do_bg
        self.batch_dice = batch_dice
        self.apply_nonlin = apply_nonlin
        self.smooth = smooth

    def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor:
        shp_x = x.shape
        if self.batch_dice:
            axes = [0] + list(range(2, len(shp_x)))
        else:
            axes = list(range(2, len(shp_x)))
        if self.apply_nonlin is not None:
            x = self.apply_nonlin(x)
        tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square)
        iou = (tp + self.smooth) / (tp + fp + fn + self.smooth)
        if not self.do_bg:
            if self.batch_dice:
                iou = iou[1:]
            else:
                iou = iou[:, 1:]
        iou = iou.mean()
        return -iou


class IoULoss_v2(nn.Module):
    def __init__(self, smooth: float = 1.0) -> None:
        super().__init__()
        self.smooth = smooth
    
    def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
        probs = F.softmax(logits, dim=1)
        targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float()
        intersection = torch.sum(probs * targets, dim=(0, 2, 3))
        union = torch.sum(probs + targets, dim=(0, 2, 3)) - intersection
        iou = 1 - (intersection + self.smooth) / (union + self.smooth)
        iou_loss = torch.mean(iou)
        return iou_loss


class TverskyLoss(nn.Module):
    def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None:
        super().__init__()
        self.square = square
        self.do_bg = do_bg
        self.batch_dice = batch_dice
        self.apply_nonlin = apply_nonlin
        self.smooth = smooth
        self.alpha = 0.3
        self.beta = 0.7

    def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor:
        shp_x = x.shape
        if self.batch_dice:
            axes = [0] + list(range(2, len(shp_x)))
        else:
            axes = list(range(2, len(shp_x)))
        if self.apply_nonlin is not None:
            x = self.apply_nonlin(x)
        tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square)
        tversky = (tp + self.smooth) / (tp + self.alpha*fp + self.beta*fn + self.smooth)
        if not self.do_bg:
            if self.batch_dice:
                tversky = tversky[1:]
            else:
                tversky = tversky[:, 1:]
        tversky = tversky.mean()
        return -tversky


class TverskyLoss_v2(nn.Module):
    def __init__(self, alpha: float = 0.5, beta: float = 0.5, smooth: float = 1.0) -> None:
        super().__init__()
        self.alpha = alpha
        self.beta = beta
        self.smooth = smooth
    
    def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
        probs = F.softmax(logits, dim=1)
        targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float()
        tp = torch.sum(probs * targets, dim=(0, 2, 3))
        fp = torch.sum((1 - targets) * probs, dim=(0, 2, 3))
        fn = torch.sum(targets * (1 - probs), dim=(0, 2, 3))
        tversky = 1 - (tp + self.smooth) / (tp + self.alpha * fp + self.beta * fn + self.smooth)
        tversky_loss = torch.mean(tversky)
        return tversky_loss


class FocalTversky_loss(nn.Module):
    def __init__(self, tversky_kwargs: Dict, gamma: float = 0.75) -> None:
        super().__init__()
        self.gamma = gamma
        self.tversky = TverskyLoss(**tversky_kwargs)

    def forward(self, net_output: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
        tversky_loss = 1 + self.tversky(net_output, target)
        focal_tversky = torch.pow(tversky_loss, self.gamma)
        return focal_tversky


class FocalTversky_loss_v2(nn.Module):
    def __init__(self, alpha: float = 0.5, beta: float = 0.5, gamma: float = 1.5, smooth: float = 1.0) -> None:
        super().__init__()
        self.alpha = alpha
        self.beta = beta
        self.gamma = gamma
        self.smooth = smooth

    def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
        probs = F.softmax(logits, dim=1)
        targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float()
        tp = torch.sum(probs * targets, dim=(0, 2, 3))
        fp = torch.sum((1 - targets) * probs, dim=(0, 2, 3))
        fn = torch.sum(targets * (1 - probs), dim=(0, 2, 3))
        focal_tversky = (1 - (tp + self.smooth) / (tp + self.alpha * fp + self.beta * fn + self.smooth)) ** self.gamma
        focal_tversky_loss = torch.mean(focal_tversky)
        return focal_tversky_loss


class AsymLoss(nn.Module):
    def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None:
        super().__init__()
        self.square = square
        self.do_bg = do_bg
        self.batch_dice = batch_dice
        self.apply_nonlin = apply_nonlin
        self.smooth = smooth
        self.beta = 1.5

    def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor:
        shp_x = x.shape
        if self.batch_dice:
            axes = [0] + list(range(2, len(shp_x)))
        else:
            axes = list(range(2, len(shp_x)))
        if self.apply_nonlin is not None:
            x = self.apply_nonlin(x)
        tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square)
        weight = (self.beta**2)/(1+self.beta**2)
        asym = (tp + self.smooth) / (tp + weight*fn + (1-weight)*fp + self.smooth)
        if not self.do_bg:
            if self.batch_dice:
                asym = asym[1:]
            else:
                asym = asym[:, 1:]
        asym = asym.mean()
        return -asym


class AsymLoss_v2(nn.Module):
    def __init__(self, alpha: float = 0.5, gamma: float = 2.0, smooth: float = 1e-5) -> None:
        super().__init__()
        self.alpha = alpha
        self.gamma = gamma
        self.smooth = smooth

    def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
        probs = F.softmax(logits, dim=1)
        targets_one_hot = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float()
        pos_loss = -self.alpha * (1 - probs) ** self.gamma * targets_one_hot * torch.log(probs + self.smooth)
        neg_loss = -(1 - self.alpha) * probs ** self.gamma * (1 - targets_one_hot) * torch.log(1 - probs + self.smooth)
        loss = pos_loss + neg_loss
        return loss.mean()


class ExpLog_loss(nn.Module):
    def __init__(self, soft_dice_kwargs: Dict, wce_kwargs: Dict, gamma: float = 0.3) -> None:
        super().__init__()
        self.wce = WeightedCrossEntropyLoss(**wce_kwargs)
        self.dc = SoftDiceLoss_v2(**soft_dice_kwargs)
        self.gamma = gamma

    def forward(self, net_output: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
        dc_loss = -self.dc(net_output, target)
        wce_loss = self.wce(net_output, target)
        explog_loss = 0.8*torch.pow(-torch.log(torch.clamp(dc_loss, 1e-6)), self.gamma) + 0.2*wce_loss
        return explog_loss


class FocalLoss(nn.Module):
    def __init__(self, apply_nonlin: Callable | None = softmax_helper, alpha: float | List[float] | np.ndarray | None = None, gamma: int = 2, balance_index: int = 0, smooth: float = 1e-4, size_average: bool = True) -> None:
        super().__init__()
        self.apply_nonlin = apply_nonlin
        self.alpha = alpha
        self.gamma = gamma
        self.balance_index = balance_index
        self.smooth = smooth
        self.size_average = size_average
        if self.smooth is not None:
            if self.smooth < 0 or self.smooth > 1.0:
                raise ValueError("smooth value should be in [0,1]")

    def forward(self, logit: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
        if self.apply_nonlin is not None:
            logit = self.apply_nonlin(logit)
        num_class = logit.shape[1]
        if logit.dim() > 2:
            logit = logit.view(logit.size(0), logit.size(1), -1)
            logit = logit.permute(0, 2, 1).contiguous()
            logit = logit.view(-1, logit.size(-1))
        target = torch.squeeze(target, 1)
        target = target.view(-1, 1)
        alpha = self.alpha
        if alpha is None:
            alpha = torch.ones(num_class, 1)
        elif isinstance(alpha, (list, np.ndarray)):
            assert len(alpha) == num_class
            alpha = torch.FloatTensor(alpha).view(num_class, 1)
            alpha = alpha / alpha.sum()
        elif isinstance(alpha, float):
            alpha = torch.ones(num_class, 1)
            alpha = alpha * (1 - self.alpha)
            alpha[self.balance_index] = self.alpha
        else:
            raise TypeError("Not support alpha type")
        if alpha.device != logit.device:
            alpha = alpha.to(logit.device)
        idx = target.cpu().long()
        one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_()
        one_hot_key = one_hot_key.scatter_(1, idx, 1)
        if one_hot_key.device != logit.device:
            one_hot_key = one_hot_key.to(logit.device)
        if self.smooth:
            one_hot_key = torch.clamp(
                one_hot_key, self.smooth/(num_class-1), 1.0 - self.smooth)
        pt = (one_hot_key * logit).sum(1) + self.smooth
        logpt = pt.log()
        gamma = self.gamma
        alpha = alpha[idx]
        alpha = torch.squeeze(alpha)
        loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt
        if self.size_average:
            loss = loss.mean()
        else:
            loss = loss.sum()
        return loss


def lovasz_grad(gt_sorted: torch.Tensor) -> torch.Tensor:
    p = len(gt_sorted)
    gts = gt_sorted.sum()
    intersection = gts - gt_sorted.float().cumsum(0)
    union = gts + (1 - gt_sorted).float().cumsum(0)
    jaccard = 1. - intersection / union
    if p > 1:
        jaccard[1:p] = jaccard[1:p] - jaccard[0:-1]
    return jaccard


class LovaszSoftmax(nn.Module):
    def __init__(self, reduction: str = "mean") -> None:
        super().__init__()
        self.reduction = reduction

    def prob_flatten(self, input: torch.Tensor, target: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        assert input.dim() in [4, 5]
        num_class = input.size(1)
        if input.dim() == 4:
            input = input.permute(0, 2, 3, 1).contiguous()
            input_flatten = input.view(-1, num_class)
        elif input.dim() == 5:
            input = input.permute(0, 2, 3, 4, 1).contiguous()
            input_flatten = input.view(-1, num_class)
        target_flatten = target.view(-1)
        return input_flatten, target_flatten

    def lovasz_softmax_flat(self, inputs: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
        num_classes = inputs.size(1)
        losses = []
        for c in range(num_classes):
            target_c = (targets == c).float()
            if num_classes == 1:
                input_c = inputs[:, 0]
            else:
                input_c = inputs[:, c]
            loss_c = (torch.autograd.Variable(target_c) - input_c).abs()
            loss_c_sorted, loss_index = torch.sort(loss_c, 0, descending=True)
            target_c_sorted = target_c[loss_index]
            losses.append(torch.dot(loss_c_sorted, torch.autograd.Variable(lovasz_grad(target_c_sorted))))
        losses = torch.stack(losses)
        if self.reduction == "none":
            loss = losses
        elif self.reduction == "sum":
            loss = losses.sum()
        else:
            loss = losses.mean()
        return loss

    def forward(self, inputs: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
        inputs, targets = self.prob_flatten(inputs, targets)
        losses = self.lovasz_softmax_flat(inputs, targets)
        return losses
    

class TopKLoss(nn.Module):
    def __init__(self, weight: torch.Tensor | None = None, ignore_index: int = -100, k: int = 10) -> None:
        super().__init__()
        self.k = k
        self.cross_entropy = nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index, reduction="none")

    def forward(self, inp: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
        pixel_losses = self.cross_entropy(inp, target)
        pixel_losses = pixel_losses.view(-1)
        num_voxels = pixel_losses.numel()
        res, _ = torch.topk(pixel_losses, int(num_voxels * self.k / 100), sorted=False)
        return res.mean()


class WeightedCrossEntropyLoss(torch.nn.CrossEntropyLoss):
    def __init__(self, weight: torch.Tensor | None = None) -> None:
        super().__init__()
        self.weight = weight

    def forward(self, inp: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
        target = target.long()
        num_classes = inp.size()[1]
        i0 = 1
        i1 = 2
        while i1 < len(inp.shape):
            inp = inp.transpose(i0, i1)
            i0 += 1
            i1 += 1
        inp = inp.contiguous()
        inp = inp.view(-1, num_classes)
        target = target.view(-1,)
        wce_loss = torch.nn.CrossEntropyLoss(weight=self.weight)
        return wce_loss(inp, target)