|
from typing import Dict
|
|
import gradio as gr
|
|
import json
|
|
import PIL.Image, PIL.ImageOps
|
|
import torch
|
|
import torchvision.transforms.functional as F
|
|
from matplotlib import cm
|
|
from matplotlib.colors import to_hex
|
|
import numpy as np
|
|
|
|
from src.models.dino import DINOSegmentationModel
|
|
from src.models.vit import ViTSegmentation
|
|
from src.models.unet import UNet
|
|
from src.utils import get_transform
|
|
|
|
|
|
device = torch.device("cpu")
|
|
model_weight1 = "weights/dino.pth"
|
|
model_weight2 = "weights/vit.pth"
|
|
model_weight3 = "weights/unet.pth"
|
|
|
|
model1 = DINOSegmentationModel()
|
|
model1.segmentation_head.load_state_dict(torch.load(model_weight1, map_location=device))
|
|
model1.eval()
|
|
model2 = ViTSegmentation()
|
|
model2.segmentation_head.load_state_dict(torch.load(model_weight2, map_location=device))
|
|
model2.eval()
|
|
model3 = UNet()
|
|
model3.load_state_dict(torch.load(model_weight3, map_location=device))
|
|
model3.eval()
|
|
|
|
mask_labels = {
|
|
"0": "Background", "1": "Hat", "2": "Hair", "3": "Sunglasses", "4": "Upper-clothes",
|
|
"5": "Skirt", "6": "Pants", "7": "Dress", "8": "Belt", "9": "Right-shoe",
|
|
"10": "Left-shoe", "11": "Face", "12": "Right-leg", "13": "Left-leg",
|
|
"14": "Right-arm", "15": "Left-arm", "16": "Bag", "17": "Scarf"
|
|
}
|
|
|
|
color_map = cm.get_cmap('tab20', 18)
|
|
label_colors = {label: to_hex(color_map(idx / len(mask_labels))[:3]) for idx, label in enumerate(mask_labels)}
|
|
fixed_colors = np.array([color_map(i)[:3] for i in range(18)]) * 255
|
|
|
|
|
|
def mask_to_color(mask: np.ndarray) -> np.ndarray:
|
|
h, w = mask.shape
|
|
color_mask = np.zeros((h, w, 3), dtype=np.uint8)
|
|
for class_idx in range(18):
|
|
color_mask[mask == class_idx] = fixed_colors[class_idx]
|
|
return color_mask
|
|
|
|
|
|
def segment_image(image, model_name: str) -> PIL.Image:
|
|
if model_name == "DINO":
|
|
model = model1
|
|
elif model_name == "ViT":
|
|
model = model2
|
|
else:
|
|
model = model3
|
|
|
|
original_width, original_height = image.size
|
|
transform = get_transform(model.mean, model.std)
|
|
input_tensor = transform(image).unsqueeze(0)
|
|
|
|
with torch.no_grad():
|
|
mask = model(input_tensor)
|
|
mask = torch.argmax(mask.squeeze(), dim=0).cpu().numpy()
|
|
|
|
mask_image = mask_to_color(mask)
|
|
|
|
mask_image = PIL.Image.fromarray(mask_image)
|
|
mask_aspect_ratio = mask_image.width / mask_image.height
|
|
|
|
new_height = original_height
|
|
new_width = int(new_height * mask_aspect_ratio)
|
|
mask_image = mask_image.resize((new_width, new_height), PIL.Image.Resampling.NEAREST)
|
|
|
|
final_mask = PIL.Image.new("RGB", (original_width, original_height))
|
|
offset = ((original_width - new_width) // 2, 0)
|
|
final_mask.paste(mask_image, offset)
|
|
|
|
return final_mask
|
|
|
|
|
|
def generate_legend_html_compact() -> str:
|
|
legend_html = """
|
|
<div style='display: flex; flex-wrap: wrap; gap: 10px; justify-content: center;'>
|
|
"""
|
|
for idx, (label, color) in enumerate(label_colors.items()):
|
|
legend_html += f"""
|
|
<div style='display: flex; align-items: center; justify-content: center;
|
|
padding: 5px 10px; border: 1px solid {color};
|
|
background-color: {color}; border-radius: 5px;
|
|
color: white; font-size: 12px; text-align: center;'>
|
|
{mask_labels[label]}
|
|
</div>
|
|
"""
|
|
legend_html += "</div>"
|
|
return legend_html
|
|
|
|
|
|
examples = [
|
|
["assets/images_examples/image1.jpg"],
|
|
["assets/images_examples/image2.jpg"],
|
|
["assets/images_examples/image3.jpg"]
|
|
]
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown("## Clothes Segmentation")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
pic = gr.Image(label="Upload Human Image", type="pil", height=300, width=300)
|
|
model_choice = gr.Dropdown(choices=["DINO", "ViT", "UNet"], label="Select Model", value="DINO")
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
predict_btn = gr.Button("Predict")
|
|
with gr.Column(scale=1):
|
|
clear_btn = gr.Button("Clear")
|
|
|
|
with gr.Column():
|
|
output = gr.Image(label="Mask", type="pil", height=300, width=300)
|
|
legend = gr.HTML(label="Legend", value=generate_legend_html_compact())
|
|
|
|
predict_btn.click(fn=segment_image, inputs=[pic, model_choice], outputs=output, api_name="predict")
|
|
clear_btn.click(lambda: (None, None), outputs=[pic, output])
|
|
gr.Examples(examples=examples, inputs=[pic])
|
|
|
|
demo.launch() |