eksemyashkina's picture
Upload 4 files
61123b8 verified
raw
history blame
4.56 kB
from typing import Dict
import gradio as gr
import json
import PIL.Image, PIL.ImageOps
import torch
import torchvision.transforms.functional as F
from matplotlib import cm
from matplotlib.colors import to_hex
import numpy as np
from src.models.dino import DINOSegmentationModel
from src.models.vit import ViTSegmentation
from src.models.unet import UNet
from src.utils import get_transform
device = torch.device("cpu")
model_weight1 = "weights/dino.pth"
model_weight2 = "weights/vit.pth"
model_weight3 = "weights/unet.pth"
model1 = DINOSegmentationModel()
model1.segmentation_head.load_state_dict(torch.load(model_weight1, map_location=device))
model1.eval()
model2 = ViTSegmentation()
model2.segmentation_head.load_state_dict(torch.load(model_weight2, map_location=device))
model2.eval()
model3 = UNet()
model3.load_state_dict(torch.load(model_weight3, map_location=device))
model3.eval()
mask_labels = {
"0": "Background", "1": "Hat", "2": "Hair", "3": "Sunglasses", "4": "Upper-clothes",
"5": "Skirt", "6": "Pants", "7": "Dress", "8": "Belt", "9": "Right-shoe",
"10": "Left-shoe", "11": "Face", "12": "Right-leg", "13": "Left-leg",
"14": "Right-arm", "15": "Left-arm", "16": "Bag", "17": "Scarf"
}
color_map = cm.get_cmap('tab20', 18)
label_colors = {label: to_hex(color_map(idx / len(mask_labels))[:3]) for idx, label in enumerate(mask_labels)}
fixed_colors = np.array([color_map(i)[:3] for i in range(18)]) * 255
def mask_to_color(mask: np.ndarray) -> np.ndarray:
h, w = mask.shape
color_mask = np.zeros((h, w, 3), dtype=np.uint8)
for class_idx in range(18):
color_mask[mask == class_idx] = fixed_colors[class_idx]
return color_mask
def segment_image(image, model_name: str) -> PIL.Image:
if model_name == "DINO":
model = model1
elif model_name == "ViT":
model = model2
else:
model = model3
original_width, original_height = image.size
transform = get_transform(model.mean, model.std)
input_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
mask = model(input_tensor)
mask = torch.argmax(mask.squeeze(), dim=0).cpu().numpy()
mask_image = mask_to_color(mask)
mask_image = PIL.Image.fromarray(mask_image)
mask_aspect_ratio = mask_image.width / mask_image.height
new_height = original_height
new_width = int(new_height * mask_aspect_ratio)
mask_image = mask_image.resize((new_width, new_height), PIL.Image.Resampling.NEAREST)
final_mask = PIL.Image.new("RGB", (original_width, original_height))
offset = ((original_width - new_width) // 2, 0)
final_mask.paste(mask_image, offset)
return final_mask
def generate_legend_html_compact() -> str:
legend_html = """
<div style='display: flex; flex-wrap: wrap; gap: 10px; justify-content: center;'>
"""
for idx, (label, color) in enumerate(label_colors.items()):
legend_html += f"""
<div style='display: flex; align-items: center; justify-content: center;
padding: 5px 10px; border: 1px solid {color};
background-color: {color}; border-radius: 5px;
color: white; font-size: 12px; text-align: center;'>
{mask_labels[label]}
</div>
"""
legend_html += "</div>"
return legend_html
examples = [
["assets/images_examples/image1.jpg"],
["assets/images_examples/image2.jpg"],
["assets/images_examples/image3.jpg"]
]
with gr.Blocks() as demo:
gr.Markdown("## Clothes Segmentation")
with gr.Row():
with gr.Column():
pic = gr.Image(label="Upload Human Image", type="pil", height=300, width=300)
model_choice = gr.Dropdown(choices=["DINO", "ViT", "UNet"], label="Select Model", value="DINO")
with gr.Row():
with gr.Column(scale=1):
predict_btn = gr.Button("Predict")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear")
with gr.Column():
output = gr.Image(label="Mask", type="pil", height=300, width=300)
legend = gr.HTML(label="Legend", value=generate_legend_html_compact())
predict_btn.click(fn=segment_image, inputs=[pic, model_choice], outputs=output, api_name="predict")
clear_btn.click(lambda: (None, None), outputs=[pic, output])
gr.Examples(examples=examples, inputs=[pic])
demo.launch()