|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class SegmentationHead(nn.Module): |
|
def __init__(self, in_channels: int, num_classes: int): |
|
super().__init__() |
|
self.head = nn.Sequential( |
|
nn.Conv2d(in_channels, 256, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(256), |
|
nn.ReLU(), |
|
nn.Conv2d(256, 256, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(256), |
|
nn.ReLU(), |
|
nn.Upsample(size=(64, 64), mode="bilinear"), |
|
nn.Conv2d(256, 128, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(128), |
|
nn.ReLU(), |
|
nn.Conv2d(128, 128, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(128), |
|
nn.ReLU(), |
|
nn.Upsample(size=(128, 128), mode="bilinear"), |
|
nn.Conv2d(128, 64, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(), |
|
nn.Conv2d(64, 64, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(), |
|
nn.Upsample(size=(224, 224), mode="bilinear"), |
|
nn.Conv2d(64, 32, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(32), |
|
nn.ReLU(), |
|
nn.Conv2d(32, 32, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(32), |
|
nn.ReLU(), |
|
nn.Conv2d(32, num_classes, kernel_size=3, padding=1), |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return self.head(x) |