from typing import Callable, List, Tuple, Dict import torch from torch import nn import torch.nn.functional as F import numpy as np def sum_tensor(inp: torch.Tensor, axes: int | List[int], keepdim: bool = False) -> torch.Tensor: axes = np.unique(axes).astype(int) if keepdim: for ax in axes: inp = inp.sum(int(ax), keepdim=True) else: for ax in sorted(axes, reverse=True): inp = inp.sum(int(ax)) return inp def get_tp_fp_fn(net_output: torch.Tensor, gt: torch.Tensor, axes: int | Tuple[int, ...] | None = None, mask: torch.Tensor | None = None, square: bool = False) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: if axes is None: axes = tuple(range(2, len(net_output.size()))) shp_x = net_output.shape shp_y = gt.shape with torch.no_grad(): if len(shp_x) != len(shp_y): gt = gt.view((shp_y[0], 1, *shp_y[1:])) if all([i == j for i, j in zip(net_output.shape, gt.shape)]): y_onehot = gt else: gt = gt.long() y_onehot = torch.zeros(shp_x) if net_output.device.type == "cuda": y_onehot = y_onehot.cuda(net_output.device.index) y_onehot.scatter_(1, gt, 1) tp = net_output * y_onehot fp = net_output * (1 - y_onehot) fn = (1 - net_output) * y_onehot if mask is not None: tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1) fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1) fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1) if square: tp = tp ** 2 fp = fp ** 2 fn = fn ** 2 tp = sum_tensor(tp, axes, keepdim=False) fp = sum_tensor(fp, axes, keepdim=False) fn = sum_tensor(fn, axes, keepdim=False) return tp, fp, fn def softmax_helper(x: torch.Tensor) -> torch.Tensor: rpt = [1 for _ in range(len(x.size()))] rpt[1] = x.size(1) x_max = x.max(1, keepdim=True)[0].repeat(*rpt) e_x = torch.exp(x - x_max) return e_x / e_x.sum(1, keepdim=True).repeat(*rpt) def flatten(tensor: torch.Tensor) -> torch.Tensor: C = tensor.size(1) axis_order = (1, 0) + tuple(range(2, tensor.dim())) transposed = tensor.permute(axis_order).contiguous() return transposed.view(C, -1) class SoftDiceLoss(nn.Module): def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1.0, square: bool = True) -> None: super().__init__() self.square = square self.do_bg = do_bg self.batch_dice = batch_dice self.apply_nonlin = apply_nonlin self.smooth = smooth def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor: shp_x = x.shape if self.batch_dice: axes = [0] + list(range(2, len(shp_x))) else: axes = list(range(2, len(shp_x))) if self.apply_nonlin is not None: x = self.apply_nonlin(x) tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square) dc = (2 * tp + self.smooth) / (2 * tp + fp + fn + self.smooth) if not self.do_bg: if self.batch_dice: dc = dc[1:] else: dc = dc[:, 1:] dc = dc.mean() return -dc class SoftDiceLoss_v2(nn.Module): def __init__(self, smooth: float = 1.0) -> None: super().__init__() self.smooth = smooth def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: probs = F.softmax(logits, dim=1) targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float() intersection = torch.sum(probs * targets, dim=(0, 2, 3)) union = torch.sum(probs + targets, dim=(0, 2, 3)) dl = 1 - (2.0 * intersection + self.smooth) / (union + self.smooth) dice_loss = torch.mean(dl) return dice_loss class SSLoss(nn.Module): def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None: super().__init__() self.square = square self.do_bg = do_bg self.batch_dice = batch_dice self.apply_nonlin = apply_nonlin self.smooth = smooth self.r = 0.1 def forward(self, net_output: torch.Tensor, gt: torch.Tensor) -> torch.Tensor: shp_x = net_output.shape shp_y = gt.shape with torch.no_grad(): if len(shp_x) != len(shp_y): gt = gt.view((shp_y[0], 1, *shp_y[1:])) if all([i == j for i, j in zip(net_output.shape, gt.shape)]): y_onehot = gt else: gt = gt.long() y_onehot = torch.zeros(shp_x) if net_output.device.type == "cuda": y_onehot = y_onehot.cuda(net_output.device.index) y_onehot.scatter_(1, gt, 1) if self.batch_dice: axes = [0] + list(range(2, len(shp_x))) else: axes = list(range(2, len(shp_x))) if self.apply_nonlin is not None: net_output = self.apply_nonlin(net_output) bg_onehot = 1 - y_onehot squared_error = (y_onehot - net_output)**2 specificity_part = sum_tensor(squared_error*y_onehot, axes)/(sum_tensor(y_onehot, axes)+self.smooth) sensitivity_part = sum_tensor(squared_error*bg_onehot, axes)/(sum_tensor(bg_onehot, axes)+self.smooth) ss = self.r * specificity_part + (1-self.r) * sensitivity_part if not self.do_bg: if self.batch_dice: ss = ss[1:] else: ss = ss[:, 1:] ss = ss.mean() return ss class SSLoss_v2(nn.Module): def __init__(self, alpha: float = 0.5) -> None: super().__init__() self.alpha = alpha def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: probs = F.softmax(logits, dim=1) targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float() intersection = torch.sum(probs * targets, dim=(0, 2, 3)) cardinality = torch.sum(probs + targets, dim=(0, 2, 3)) dice_loss = 1 - (2.0 * intersection + 1e-6) / (cardinality + 1e-6) ce_loss = F.cross_entropy(probs, targets, reduction='mean') loss = 0.5 * dice_loss.mean() + (1 - 0.5) * ce_loss return loss class IoULoss(nn.Module): def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None: super().__init__() self.square = square self.do_bg = do_bg self.batch_dice = batch_dice self.apply_nonlin = apply_nonlin self.smooth = smooth def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor: shp_x = x.shape if self.batch_dice: axes = [0] + list(range(2, len(shp_x))) else: axes = list(range(2, len(shp_x))) if self.apply_nonlin is not None: x = self.apply_nonlin(x) tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square) iou = (tp + self.smooth) / (tp + fp + fn + self.smooth) if not self.do_bg: if self.batch_dice: iou = iou[1:] else: iou = iou[:, 1:] iou = iou.mean() return -iou class IoULoss_v2(nn.Module): def __init__(self, smooth: float = 1.0) -> None: super().__init__() self.smooth = smooth def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: probs = F.softmax(logits, dim=1) targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float() intersection = torch.sum(probs * targets, dim=(0, 2, 3)) union = torch.sum(probs + targets, dim=(0, 2, 3)) - intersection iou = 1 - (intersection + self.smooth) / (union + self.smooth) iou_loss = torch.mean(iou) return iou_loss class TverskyLoss(nn.Module): def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None: super().__init__() self.square = square self.do_bg = do_bg self.batch_dice = batch_dice self.apply_nonlin = apply_nonlin self.smooth = smooth self.alpha = 0.3 self.beta = 0.7 def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor: shp_x = x.shape if self.batch_dice: axes = [0] + list(range(2, len(shp_x))) else: axes = list(range(2, len(shp_x))) if self.apply_nonlin is not None: x = self.apply_nonlin(x) tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square) tversky = (tp + self.smooth) / (tp + self.alpha*fp + self.beta*fn + self.smooth) if not self.do_bg: if self.batch_dice: tversky = tversky[1:] else: tversky = tversky[:, 1:] tversky = tversky.mean() return -tversky class TverskyLoss_v2(nn.Module): def __init__(self, alpha: float = 0.5, beta: float = 0.5, smooth: float = 1.0) -> None: super().__init__() self.alpha = alpha self.beta = beta self.smooth = smooth def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: probs = F.softmax(logits, dim=1) targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float() tp = torch.sum(probs * targets, dim=(0, 2, 3)) fp = torch.sum((1 - targets) * probs, dim=(0, 2, 3)) fn = torch.sum(targets * (1 - probs), dim=(0, 2, 3)) tversky = 1 - (tp + self.smooth) / (tp + self.alpha * fp + self.beta * fn + self.smooth) tversky_loss = torch.mean(tversky) return tversky_loss class FocalTversky_loss(nn.Module): def __init__(self, tversky_kwargs: Dict, gamma: float = 0.75) -> None: super().__init__() self.gamma = gamma self.tversky = TverskyLoss(**tversky_kwargs) def forward(self, net_output: torch.Tensor, target: torch.Tensor) -> torch.Tensor: tversky_loss = 1 + self.tversky(net_output, target) focal_tversky = torch.pow(tversky_loss, self.gamma) return focal_tversky class FocalTversky_loss_v2(nn.Module): def __init__(self, alpha: float = 0.5, beta: float = 0.5, gamma: float = 1.5, smooth: float = 1.0) -> None: super().__init__() self.alpha = alpha self.beta = beta self.gamma = gamma self.smooth = smooth def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: probs = F.softmax(logits, dim=1) targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float() tp = torch.sum(probs * targets, dim=(0, 2, 3)) fp = torch.sum((1 - targets) * probs, dim=(0, 2, 3)) fn = torch.sum(targets * (1 - probs), dim=(0, 2, 3)) focal_tversky = (1 - (tp + self.smooth) / (tp + self.alpha * fp + self.beta * fn + self.smooth)) ** self.gamma focal_tversky_loss = torch.mean(focal_tversky) return focal_tversky_loss class AsymLoss(nn.Module): def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None: super().__init__() self.square = square self.do_bg = do_bg self.batch_dice = batch_dice self.apply_nonlin = apply_nonlin self.smooth = smooth self.beta = 1.5 def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor: shp_x = x.shape if self.batch_dice: axes = [0] + list(range(2, len(shp_x))) else: axes = list(range(2, len(shp_x))) if self.apply_nonlin is not None: x = self.apply_nonlin(x) tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square) weight = (self.beta**2)/(1+self.beta**2) asym = (tp + self.smooth) / (tp + weight*fn + (1-weight)*fp + self.smooth) if not self.do_bg: if self.batch_dice: asym = asym[1:] else: asym = asym[:, 1:] asym = asym.mean() return -asym class AsymLoss_v2(nn.Module): def __init__(self, alpha: float = 0.5, gamma: float = 2.0, smooth: float = 1e-5) -> None: super().__init__() self.alpha = alpha self.gamma = gamma self.smooth = smooth def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: probs = F.softmax(logits, dim=1) targets_one_hot = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float() pos_loss = -self.alpha * (1 - probs) ** self.gamma * targets_one_hot * torch.log(probs + self.smooth) neg_loss = -(1 - self.alpha) * probs ** self.gamma * (1 - targets_one_hot) * torch.log(1 - probs + self.smooth) loss = pos_loss + neg_loss return loss.mean() class ExpLog_loss(nn.Module): def __init__(self, soft_dice_kwargs: Dict, wce_kwargs: Dict, gamma: float = 0.3) -> None: super().__init__() self.wce = WeightedCrossEntropyLoss(**wce_kwargs) self.dc = SoftDiceLoss_v2(**soft_dice_kwargs) self.gamma = gamma def forward(self, net_output: torch.Tensor, target: torch.Tensor) -> torch.Tensor: dc_loss = -self.dc(net_output, target) wce_loss = self.wce(net_output, target) explog_loss = 0.8*torch.pow(-torch.log(torch.clamp(dc_loss, 1e-6)), self.gamma) + 0.2*wce_loss return explog_loss class FocalLoss(nn.Module): def __init__(self, apply_nonlin: Callable | None = softmax_helper, alpha: float | List[float] | np.ndarray | None = None, gamma: int = 2, balance_index: int = 0, smooth: float = 1e-4, size_average: bool = True) -> None: super().__init__() self.apply_nonlin = apply_nonlin self.alpha = alpha self.gamma = gamma self.balance_index = balance_index self.smooth = smooth self.size_average = size_average if self.smooth is not None: if self.smooth < 0 or self.smooth > 1.0: raise ValueError("smooth value should be in [0,1]") def forward(self, logit: torch.Tensor, target: torch.Tensor) -> torch.Tensor: if self.apply_nonlin is not None: logit = self.apply_nonlin(logit) num_class = logit.shape[1] if logit.dim() > 2: logit = logit.view(logit.size(0), logit.size(1), -1) logit = logit.permute(0, 2, 1).contiguous() logit = logit.view(-1, logit.size(-1)) target = torch.squeeze(target, 1) target = target.view(-1, 1) alpha = self.alpha if alpha is None: alpha = torch.ones(num_class, 1) elif isinstance(alpha, (list, np.ndarray)): assert len(alpha) == num_class alpha = torch.FloatTensor(alpha).view(num_class, 1) alpha = alpha / alpha.sum() elif isinstance(alpha, float): alpha = torch.ones(num_class, 1) alpha = alpha * (1 - self.alpha) alpha[self.balance_index] = self.alpha else: raise TypeError("Not support alpha type") if alpha.device != logit.device: alpha = alpha.to(logit.device) idx = target.cpu().long() one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_() one_hot_key = one_hot_key.scatter_(1, idx, 1) if one_hot_key.device != logit.device: one_hot_key = one_hot_key.to(logit.device) if self.smooth: one_hot_key = torch.clamp( one_hot_key, self.smooth/(num_class-1), 1.0 - self.smooth) pt = (one_hot_key * logit).sum(1) + self.smooth logpt = pt.log() gamma = self.gamma alpha = alpha[idx] alpha = torch.squeeze(alpha) loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt if self.size_average: loss = loss.mean() else: loss = loss.sum() return loss def lovasz_grad(gt_sorted: torch.Tensor) -> torch.Tensor: p = len(gt_sorted) gts = gt_sorted.sum() intersection = gts - gt_sorted.float().cumsum(0) union = gts + (1 - gt_sorted).float().cumsum(0) jaccard = 1. - intersection / union if p > 1: jaccard[1:p] = jaccard[1:p] - jaccard[0:-1] return jaccard class LovaszSoftmax(nn.Module): def __init__(self, reduction: str = "mean") -> None: super().__init__() self.reduction = reduction def prob_flatten(self, input: torch.Tensor, target: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: assert input.dim() in [4, 5] num_class = input.size(1) if input.dim() == 4: input = input.permute(0, 2, 3, 1).contiguous() input_flatten = input.view(-1, num_class) elif input.dim() == 5: input = input.permute(0, 2, 3, 4, 1).contiguous() input_flatten = input.view(-1, num_class) target_flatten = target.view(-1) return input_flatten, target_flatten def lovasz_softmax_flat(self, inputs: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: num_classes = inputs.size(1) losses = [] for c in range(num_classes): target_c = (targets == c).float() if num_classes == 1: input_c = inputs[:, 0] else: input_c = inputs[:, c] loss_c = (torch.autograd.Variable(target_c) - input_c).abs() loss_c_sorted, loss_index = torch.sort(loss_c, 0, descending=True) target_c_sorted = target_c[loss_index] losses.append(torch.dot(loss_c_sorted, torch.autograd.Variable(lovasz_grad(target_c_sorted)))) losses = torch.stack(losses) if self.reduction == "none": loss = losses elif self.reduction == "sum": loss = losses.sum() else: loss = losses.mean() return loss def forward(self, inputs: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: inputs, targets = self.prob_flatten(inputs, targets) losses = self.lovasz_softmax_flat(inputs, targets) return losses class TopKLoss(nn.Module): def __init__(self, weight: torch.Tensor | None = None, ignore_index: int = -100, k: int = 10) -> None: super().__init__() self.k = k self.cross_entropy = nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index, reduction="none") def forward(self, inp: torch.Tensor, target: torch.Tensor) -> torch.Tensor: pixel_losses = self.cross_entropy(inp, target) pixel_losses = pixel_losses.view(-1) num_voxels = pixel_losses.numel() res, _ = torch.topk(pixel_losses, int(num_voxels * self.k / 100), sorted=False) return res.mean() class WeightedCrossEntropyLoss(torch.nn.CrossEntropyLoss): def __init__(self, weight: torch.Tensor | None = None) -> None: super().__init__() self.weight = weight def forward(self, inp: torch.Tensor, target: torch.Tensor) -> torch.Tensor: target = target.long() num_classes = inp.size()[1] i0 = 1 i1 = 2 while i1 < len(inp.shape): inp = inp.transpose(i0, i1) i0 += 1 i1 += 1 inp = inp.contiguous() inp = inp.view(-1, num_classes) target = target.view(-1,) wce_loss = torch.nn.CrossEntropyLoss(weight=self.weight) return wce_loss(inp, target)