Upload 6 files
Browse files- app.py +121 -0
- losses_config.json +14 -0
- requirements.txt +11 -0
- weights/dino.pth +3 -0
- weights/unet.pth +3 -0
- weights/vit.pth +3 -0
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import PIL.Image, PIL.ImageOps
|
3 |
+
import torch
|
4 |
+
import torchvision.transforms.functional as F
|
5 |
+
from matplotlib import cm
|
6 |
+
from matplotlib.colors import to_hex
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from src.models.dino import DINOSegmentationModel
|
10 |
+
from src.models.vit import ViTSegmentation
|
11 |
+
from src.models.unet import UNet
|
12 |
+
from src.utils import get_transform
|
13 |
+
|
14 |
+
|
15 |
+
device = torch.device("cpu")
|
16 |
+
model_weight1 = "weights/dino.pth"
|
17 |
+
model_weight2 = "weights/vit.pth"
|
18 |
+
model_weight3 = "weights/unet.pth"
|
19 |
+
|
20 |
+
model1 = DINOSegmentationModel()
|
21 |
+
model1.segmentation_head.load_state_dict(torch.load(model_weight1, map_location=device))
|
22 |
+
model1.eval()
|
23 |
+
model2 = ViTSegmentation()
|
24 |
+
model2.segmentation_head.load_state_dict(torch.load(model_weight2, map_location=device))
|
25 |
+
model2.eval()
|
26 |
+
model3 = UNet()
|
27 |
+
model3.load_state_dict(torch.load(model_weight3, map_location=device))
|
28 |
+
model3.eval()
|
29 |
+
|
30 |
+
mask_labels = {
|
31 |
+
"0": "Background", "1": "Person", "2": "Skin", "3": "Left-brow", "4": "Right-brow",
|
32 |
+
"5": "Left-eye", "6": "Right-eye", "7": "Lips", "8": "Teeth"
|
33 |
+
}
|
34 |
+
|
35 |
+
color_map = cm.get_cmap('tab20', 9)
|
36 |
+
label_colors = {label: to_hex(color_map(idx / len(mask_labels))[:3]) for idx, label in enumerate(mask_labels)}
|
37 |
+
fixed_colors = np.array([color_map(i)[:3] for i in range(9)]) * 255
|
38 |
+
|
39 |
+
|
40 |
+
def mask_to_color(mask: np.ndarray) -> np.ndarray:
|
41 |
+
h, w = mask.shape
|
42 |
+
color_mask = np.zeros((h, w, 3), dtype=np.uint8)
|
43 |
+
for class_idx in range(9):
|
44 |
+
color_mask[mask == class_idx] = fixed_colors[class_idx]
|
45 |
+
return color_mask
|
46 |
+
|
47 |
+
|
48 |
+
def segment_image(image, model_name: str) -> PIL.Image:
|
49 |
+
if model_name == "DINO":
|
50 |
+
model = model1
|
51 |
+
elif model_name == "ViT":
|
52 |
+
model = model2
|
53 |
+
else:
|
54 |
+
model = model3
|
55 |
+
|
56 |
+
original_width, original_height = image.size
|
57 |
+
transform = get_transform(model.mean, model.std)
|
58 |
+
input_tensor = transform(image).unsqueeze(0)
|
59 |
+
|
60 |
+
with torch.no_grad():
|
61 |
+
mask = model(input_tensor)
|
62 |
+
mask = torch.argmax(mask.squeeze(), dim=0).cpu().numpy()
|
63 |
+
|
64 |
+
mask_image = mask_to_color(mask)
|
65 |
+
|
66 |
+
mask_image = PIL.Image.fromarray(mask_image)
|
67 |
+
mask_aspect_ratio = mask_image.width / mask_image.height
|
68 |
+
|
69 |
+
new_height = original_height
|
70 |
+
new_width = int(new_height * mask_aspect_ratio)
|
71 |
+
mask_image = mask_image.resize((new_width, new_height), PIL.Image.Resampling.NEAREST)
|
72 |
+
|
73 |
+
final_mask = PIL.Image.new("RGB", (original_width, original_height))
|
74 |
+
offset = ((original_width - new_width) // 2, 0)
|
75 |
+
final_mask.paste(mask_image, offset)
|
76 |
+
|
77 |
+
return final_mask
|
78 |
+
|
79 |
+
def generate_legend_html_compact() -> str:
|
80 |
+
legend_html = """
|
81 |
+
<div style='display: flex; flex-wrap: wrap; gap: 10px; justify-content: center;'>
|
82 |
+
"""
|
83 |
+
for idx, (label, color) in enumerate(label_colors.items()):
|
84 |
+
legend_html += f"""
|
85 |
+
<div style='display: flex; align-items: center; justify-content: center;
|
86 |
+
padding: 5px 10px; border: 1px solid {color};
|
87 |
+
background-color: {color}; border-radius: 5px;
|
88 |
+
color: white; font-size: 12px; text-align: center;'>
|
89 |
+
{mask_labels[label]}
|
90 |
+
</div>
|
91 |
+
"""
|
92 |
+
legend_html += "</div>"
|
93 |
+
return legend_html
|
94 |
+
|
95 |
+
examples = [
|
96 |
+
["assets/images_examples/image1.jpg"],
|
97 |
+
["assets/images_examples/image2.jpg"],
|
98 |
+
["assets/images_examples/image3.jpg"]
|
99 |
+
]
|
100 |
+
|
101 |
+
with gr.Blocks() as demo:
|
102 |
+
gr.Markdown("## Face Segmentation")
|
103 |
+
with gr.Row():
|
104 |
+
with gr.Column():
|
105 |
+
pic = gr.Image(label="Upload Human Image", type="pil", height=400, width=400)
|
106 |
+
model_choice = gr.Dropdown(choices=["DINO", "ViT", "UNet"], label="Select Model", value="DINO")
|
107 |
+
with gr.Row():
|
108 |
+
with gr.Column(scale=1):
|
109 |
+
predict_btn = gr.Button("Predict")
|
110 |
+
with gr.Column(scale=1):
|
111 |
+
clear_btn = gr.Button("Clear")
|
112 |
+
|
113 |
+
with gr.Column():
|
114 |
+
output = gr.Image(label="Mask", type="pil", height=400, width=400)
|
115 |
+
legend = gr.HTML(label="Legend", value=generate_legend_html_compact())
|
116 |
+
|
117 |
+
predict_btn.click(fn=segment_image, inputs=[pic, model_choice], outputs=output, api_name="predict")
|
118 |
+
clear_btn.click(lambda: (None, None), outputs=[pic, output])
|
119 |
+
gr.Examples(examples=examples, inputs=[pic])
|
120 |
+
|
121 |
+
demo.launch()
|
losses_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cross_entropy": 0.33,
|
3 |
+
"SSLoss_v2": 0.0,
|
4 |
+
"ExpLog_loss": 0.0,
|
5 |
+
"LovaszSoftmax": 0.0,
|
6 |
+
"TopKLoss": 0.33,
|
7 |
+
"WeightedCrossEntropyLoss": 0.0,
|
8 |
+
"SoftDiceLoss_v2": 0.0,
|
9 |
+
"IoULoss_v2": 0.0,
|
10 |
+
"TverskyLoss_v2": 0.0,
|
11 |
+
"FocalTversky_loss_v2": 0.0,
|
12 |
+
"AsymLoss_v2": 0.0,
|
13 |
+
"FocalLoss": 0.33
|
14 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.4.1
|
2 |
+
torchvision==0.19.1
|
3 |
+
kaggle==1.6.17
|
4 |
+
wandb==0.18.5
|
5 |
+
gradio==5.4.0
|
6 |
+
datasets==3.1.0
|
7 |
+
accelerate==1.1.0
|
8 |
+
opencv-python==4.10.0.84
|
9 |
+
scipy==1.14.1
|
10 |
+
transformers==4.46.2
|
11 |
+
matplotlib==3.10.0
|
weights/dino.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7bbb568a7aaa755f68da7cbeb493cc1a7c002e1659ccda808564a8a1bd075fb
|
3 |
+
size 8269400
|
weights/unet.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c0699b44ac999ebe77a236bd20a33a71f2507271aa2de2d1559f305ecf27c8e
|
3 |
+
size 200940690
|
weights/vit.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2539e8dbf9029370ba143e39ac9355215dfa613876b0c1ea9c09d03ae5e1ec09
|
3 |
+
size 11808344
|