Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# from transformers import pipeline | |
# classifier = pipeline('text-classification', model='el-filatova/clasificador-tweet-sentiment') | |
# def predict(text): | |
# return classifier(text) | |
# iface = gr.Interface(fn=predict, inputs=[gr.Textbox(value="ah, what a pang of aching sharp surprise")], outputs="text") | |
# iface.launch() | |
import gradio as gr | |
from transformers import pipeline | |
classifier = pipeline('text-classification', model='el-filatova/clasificador-tweet-sentiment') | |
def predict(text): | |
prediction = classifier(text) | |
score = int(round(prediction[0]['score'] * 100)) | |
if prediction[0]['label'] == "LABEL_0": | |
output = f"This tweet carries a negative sentiment with a confidence level of {score}%." | |
elif prediction[0]['label'] == "LABEL_1": | |
output = f"This tweet carries a neutral sentiment with a confidence level of {score}%." | |
else: | |
output = f"This tweet carries a positive sentiment with a confidence level of {score}%." | |
return output | |
iface = gr.Interface(fn=predict, inputs=[gr.Textbox(value="The feedback received was generally constructive with some areas for improvement highlighted.")], outputs="text") | |
iface.launch(share=True) | |