el-filatova commited on
Commit
2e8011b
1 Parent(s): b22e92c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -2
app.py CHANGED
@@ -1,10 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
  from transformers import pipeline
4
  classifier = pipeline('text-classification', model='el-filatova/clasificador-tweet-sentiment')
5
 
6
  def predict(text):
7
- return classifier(text)
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  iface = gr.Interface(fn=predict, inputs=[gr.Textbox(value="ah, what a pang of aching sharp surprise")], outputs="text")
10
- iface.launch()
 
 
 
 
 
1
+ # import gradio as gr
2
+
3
+ # from transformers import pipeline
4
+ # classifier = pipeline('text-classification', model='el-filatova/clasificador-tweet-sentiment')
5
+
6
+ # def predict(text):
7
+ # return classifier(text)
8
+
9
+ # iface = gr.Interface(fn=predict, inputs=[gr.Textbox(value="ah, what a pang of aching sharp surprise")], outputs="text")
10
+ # iface.launch()
11
+
12
  import gradio as gr
13
 
14
  from transformers import pipeline
15
  classifier = pipeline('text-classification', model='el-filatova/clasificador-tweet-sentiment')
16
 
17
  def predict(text):
18
+ prediction = classifier(text)
19
+ score = int(round(prediction[0]['score'] * 100))
20
+
21
+ if prediction[0]['label'] == "LABEL_0":
22
+ output = f"This tweet carries a negative sentiment with a confidence level of {score}%."
23
+ elif prediction[0]['label'] == "LABEL_1":
24
+ output = f"This tweet carries a neutral sentiment with a confidence level of {score}%."
25
+ else:
26
+ output = f"This tweet carries a positive sentiment with a confidence level of {score}%."
27
+
28
+ return output
29
+
30
 
31
  iface = gr.Interface(fn=predict, inputs=[gr.Textbox(value="ah, what a pang of aching sharp surprise")], outputs="text")
32
+ iface.launch()
33
+
34
+
35
+
36
+