elapt1c's picture
Update app.py
f710225 verified
raw
history blame
4.79 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, AutoModel
from huggingface_hub import hf_hub_download
import os
import torch.nn as nn
# ----- Model Definition -----
class CustomDialoGPT(nn.Module):
def __init__(self, vocab_size, n_embd=768, n_head=8, n_layer=8): # <---- FORCE n_embd, n_head, n_layer to match DialoGPT-medium
super().__init__()
config = AutoConfig.from_pretrained("microsoft/DialoGPT-medium",
vocab_size=vocab_size,
n_embd=n_embd,
n_head=n_head,
n_layer=n_layer,
bos_token_id=50256,
eos_token_id=50256,
pad_token_id = 50256
)
self.transformer = AutoModelForCausalLM.from_config(config) # Use AutoModelForCausalLM here
self.lm_head = nn.Linear(n_embd, vocab_size, bias=False) # Keep lm_head
def forward(self, input_ids):
transformer_outputs = self.transformer(input_ids=input_ids, output_hidden_states=True)
hidden_states = transformer_outputs.hidden_states[-1] #get last hidden state
logits = self.lm_head(hidden_states)
return logits
# Model and tokenizer details
model_repo = "elapt1c/ElapticAI-1a"
model_filename = "model.pth" # <--- CHECK FILENAME ON HF HUB, UPDATE IF NEEDED!
tokenizer_name = "microsoft/DialoGPT-medium"
# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
vocab_size = len(tokenizer)
# Initialize model with fixed parameters to match checkpoint
n_embd=768 # <---- FORCE n_embd to 768
n_head=8 # <---- FORCE n_head to 12
n_layer=8 # <---- FORCE n_layer to 12
model = CustomDialoGPT(vocab_size, n_embd, n_head, n_layer)
# Download and load model weights
try:
pth_filepath = hf_hub_download(repo_id=model_repo, filename=model_filename)
checkpoint = torch.load(pth_filepath, map_location=device)
# Handle different checkpoint saving formats if needed.
# If your checkpoint is just the state_dict, load it directly.
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
elif 'state_dict' in checkpoint:
model.load_state_dict(checkpoint['state_dict'])
else:
# Assume checkpoint is just the raw state_dict
model.load_state_dict(checkpoint)
print(f"Successfully loaded model weights from {model_repo}/{model_filename}")
except Exception as e:
print(f"Error loading model: {e}")
print("Please ensure the model repository and filename are correct and that the model architecture in app.py matches the checkpoint.")
raise e # It's better to raise the error in a Space, so it's visible.
model.to(device)
model.eval() # Set model to evaluation mode
def chat_with_model(user_input, history=[]):
"""Chatbot function to interact with the loaded model."""
history_transformer_format = history_to_transformer_format(history)
input_text = tokenizer.eos_token.join(history_transformer_format + [user_input])
input_ids = tokenizer.encode(input_text, return_tensors='pt').to(device)
with torch.no_grad():
output = model.transformer.generate( # Use model.transformer.generate here
inputs=input_ids, # Use inputs instead of input_ids
max_length=1000, # Adjust as needed
pad_token_id=tokenizer.eos_token_id,
temperature=0.7,
top_p=0.9
)
response = tokenizer.decode(output[0], skip_special_tokens=True)
# Extract only the bot's last response, assuming it's after the last user input.
# This is a simple heuristic and might need adjustments based on training data format.
split_response = response.split(tokenizer.eos_token)
bot_response = split_response[-1].strip()
history.append((user_input, bot_response))
return bot_response, history
def history_to_transformer_format(history):
"""Convert gradio history to a list of strings for transformer input."""
history_formatted = []
for user_msg, bot_msg in history:
history_formatted.append(user_msg)
history_formatted.append(bot_msg)
return history_formatted
iface = gr.Interface( # Changed from gr.ChatInterface to gr.Interface
fn=chat_with_model,
inputs=gr.Textbox(placeholder="Type your message here..."), # Explicitly define inputs as gr.Textbox
outputs=gr.Chatbot(), # Explicitly define outputs as gr.Chatbot
title="ElapticAI-1a Chatbot",
description="Simple chatbot interface for ElapticAI-1a model. Talk to the model and see its responses!",
examples=[
["Hello"],
["How are you?"],
["Tell me a joke"]
]
)
if __name__ == "__main__":
iface.launch()