elapt1c commited on
Commit
a8cf76d
·
verified ·
1 Parent(s): bd5197f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -28
app.py CHANGED
@@ -1,9 +1,15 @@
1
  from typing import List, Tuple, Dict, Generator
2
- from langchain.llms import OpenAI
 
3
  import gradio as gr
4
 
5
- model_name = "gpt-3.5-turbo"
6
- LLM = OpenAI(model_name=model_name, temperature=0.1)
 
 
 
 
 
7
 
8
  def create_history_messages(history: List[Tuple[str, str]]) -> List[dict]:
9
  history_messages = [{"role": "user", "content": m[0]} for m in history]
@@ -36,9 +42,7 @@ def create_formatted_history(history_messages: List[dict]) -> List[Tuple[str, st
36
 
37
  return formatted_history
38
 
39
- def chat(
40
- message: str, state: List[Dict[str, str]], client = LLM.client
41
- ) -> Generator[Tuple[List[Tuple[str, str]], List[Dict[str, str]]], None, None]:
42
  history_messages = state
43
  if history_messages == None:
44
  history_messages = []
@@ -48,36 +52,25 @@ def chat(
48
  # We have no content for the assistant's response yet but we will update this:
49
  history_messages.append({"role": "assistant", "content": ""})
50
 
51
- response_message = ""
 
52
 
53
- chat_generator = client.create(
54
- messages=history_messages, stream=True, model=model_name
55
- )
56
 
57
- for chunk in chat_generator:
58
- if "choices" in chunk:
59
- for choice in chunk["choices"]:
60
- if "delta" in choice and "content" in choice["delta"]:
61
- new_token = choice["delta"]["content"]
62
- # Add the latest token:
63
- response_message += new_token
64
- # Update the assistant's response in our model:
65
- history_messages[-1]["content"] = response_message
66
 
67
- if "finish_reason" in choice and choice["finish_reason"] == "stop":
68
- break
69
- formatted_history = create_formatted_history(history_messages)
70
- yield formatted_history, history_messages
71
 
72
  chatbot = gr.Chatbot(label="Chat").style(color_map=("yellow", "purple"))
73
  iface = gr.Interface(
74
  fn=chat,
75
- inputs=[
76
- gr.Textbox(placeholder="Hello! How are you? etc.", label="Message"),
77
- "state",
78
- ],
79
  outputs=[chatbot, "state"],
80
  allow_flagging="never",
81
  )
82
 
83
- iface.queue().launch()
 
1
  from typing import List, Tuple, Dict, Generator
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
  import gradio as gr
5
 
6
+ # Load your safetensors model and tokenizer
7
+ model_name = "DuckyPolice/ElapticAI-1a"
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
10
+
11
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ model.to(device)
13
 
14
  def create_history_messages(history: List[Tuple[str, str]]) -> List[dict]:
15
  history_messages = [{"role": "user", "content": m[0]} for m in history]
 
42
 
43
  return formatted_history
44
 
45
+ def chat(message: str, state: List[Dict[str, str]]) -> Generator[Tuple[List[Tuple[str, str]], List[Dict[str, str]]], None, None]:
 
 
46
  history_messages = state
47
  if history_messages == None:
48
  history_messages = []
 
52
  # We have no content for the assistant's response yet but we will update this:
53
  history_messages.append({"role": "assistant", "content": ""})
54
 
55
+ # Prepare input for the model
56
+ inputs = tokenizer(message, return_tensors="pt").to(device)
57
 
58
+ # Generate response from model
59
+ response_ids = model.generate(inputs['input_ids'], max_length=200)
60
+ response_message = tokenizer.decode(response_ids[0], skip_special_tokens=True)
61
 
62
+ # Update the assistant's response in our model
63
+ history_messages[-1]["content"] = response_message
 
 
 
 
 
 
 
64
 
65
+ formatted_history = create_formatted_history(history_messages)
66
+ yield formatted_history, history_messages
 
 
67
 
68
  chatbot = gr.Chatbot(label="Chat").style(color_map=("yellow", "purple"))
69
  iface = gr.Interface(
70
  fn=chat,
71
+ inputs=[gr.Textbox(placeholder="Hello! How are you? etc.", label="Message"), "state"],
 
 
 
72
  outputs=[chatbot, "state"],
73
  allow_flagging="never",
74
  )
75
 
76
+ iface.queue().launch()