Spaces:
Sleeping
Sleeping
elapt1c
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,15 @@
|
|
1 |
from typing import List, Tuple, Dict, Generator
|
2 |
-
from
|
|
|
3 |
import gradio as gr
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def create_history_messages(history: List[Tuple[str, str]]) -> List[dict]:
|
9 |
history_messages = [{"role": "user", "content": m[0]} for m in history]
|
@@ -36,9 +42,7 @@ def create_formatted_history(history_messages: List[dict]) -> List[Tuple[str, st
|
|
36 |
|
37 |
return formatted_history
|
38 |
|
39 |
-
def chat(
|
40 |
-
message: str, state: List[Dict[str, str]], client = LLM.client
|
41 |
-
) -> Generator[Tuple[List[Tuple[str, str]], List[Dict[str, str]]], None, None]:
|
42 |
history_messages = state
|
43 |
if history_messages == None:
|
44 |
history_messages = []
|
@@ -48,36 +52,25 @@ def chat(
|
|
48 |
# We have no content for the assistant's response yet but we will update this:
|
49 |
history_messages.append({"role": "assistant", "content": ""})
|
50 |
|
51 |
-
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
)
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
for choice in chunk["choices"]:
|
60 |
-
if "delta" in choice and "content" in choice["delta"]:
|
61 |
-
new_token = choice["delta"]["content"]
|
62 |
-
# Add the latest token:
|
63 |
-
response_message += new_token
|
64 |
-
# Update the assistant's response in our model:
|
65 |
-
history_messages[-1]["content"] = response_message
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
formatted_history = create_formatted_history(history_messages)
|
70 |
-
yield formatted_history, history_messages
|
71 |
|
72 |
chatbot = gr.Chatbot(label="Chat").style(color_map=("yellow", "purple"))
|
73 |
iface = gr.Interface(
|
74 |
fn=chat,
|
75 |
-
inputs=[
|
76 |
-
gr.Textbox(placeholder="Hello! How are you? etc.", label="Message"),
|
77 |
-
"state",
|
78 |
-
],
|
79 |
outputs=[chatbot, "state"],
|
80 |
allow_flagging="never",
|
81 |
)
|
82 |
|
83 |
-
iface.queue().launch()
|
|
|
1 |
from typing import List, Tuple, Dict, Generator
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
import gradio as gr
|
5 |
|
6 |
+
# Load your safetensors model and tokenizer
|
7 |
+
model_name = "DuckyPolice/ElapticAI-1a"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
10 |
+
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
model.to(device)
|
13 |
|
14 |
def create_history_messages(history: List[Tuple[str, str]]) -> List[dict]:
|
15 |
history_messages = [{"role": "user", "content": m[0]} for m in history]
|
|
|
42 |
|
43 |
return formatted_history
|
44 |
|
45 |
+
def chat(message: str, state: List[Dict[str, str]]) -> Generator[Tuple[List[Tuple[str, str]], List[Dict[str, str]]], None, None]:
|
|
|
|
|
46 |
history_messages = state
|
47 |
if history_messages == None:
|
48 |
history_messages = []
|
|
|
52 |
# We have no content for the assistant's response yet but we will update this:
|
53 |
history_messages.append({"role": "assistant", "content": ""})
|
54 |
|
55 |
+
# Prepare input for the model
|
56 |
+
inputs = tokenizer(message, return_tensors="pt").to(device)
|
57 |
|
58 |
+
# Generate response from model
|
59 |
+
response_ids = model.generate(inputs['input_ids'], max_length=200)
|
60 |
+
response_message = tokenizer.decode(response_ids[0], skip_special_tokens=True)
|
61 |
|
62 |
+
# Update the assistant's response in our model
|
63 |
+
history_messages[-1]["content"] = response_message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
formatted_history = create_formatted_history(history_messages)
|
66 |
+
yield formatted_history, history_messages
|
|
|
|
|
67 |
|
68 |
chatbot = gr.Chatbot(label="Chat").style(color_map=("yellow", "purple"))
|
69 |
iface = gr.Interface(
|
70 |
fn=chat,
|
71 |
+
inputs=[gr.Textbox(placeholder="Hello! How are you? etc.", label="Message"), "state"],
|
|
|
|
|
|
|
72 |
outputs=[chatbot, "state"],
|
73 |
allow_flagging="never",
|
74 |
)
|
75 |
|
76 |
+
iface.queue().launch()
|