Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,155 +1,96 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
import gradio as gr
|
4 |
-
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
best_params_diff = params_diff
|
56 |
-
best_n_embd = n_embd
|
57 |
-
best_n_head = n_head
|
58 |
-
best_n_layer = n_layer
|
59 |
-
|
60 |
-
del model
|
61 |
-
print("Model parameters:", best_n_embd, best_n_head, best_n_layer)
|
62 |
-
|
63 |
-
return CustomDialoGPT(vocab_size, best_n_embd, best_n_head, best_n_layer)
|
64 |
-
|
65 |
-
def chat_with_model(user_input, model, tokenizer, device="cpu", max_length=100, temperature=0.8):
|
66 |
-
"""
|
67 |
-
Generates a response from the model given the user input.
|
68 |
-
"""
|
69 |
-
input_ids = tokenizer.encode(user_input, return_tensors='pt').to(device)
|
70 |
|
71 |
with torch.no_grad():
|
72 |
-
output = model.
|
73 |
-
|
74 |
-
max_length=
|
75 |
-
temperature=temperature,
|
76 |
pad_token_id=tokenizer.eos_token_id,
|
|
|
|
|
77 |
)
|
78 |
-
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
79 |
-
return generated_text
|
80 |
-
|
81 |
-
def load_model_and_tokenizer(model_repo, device):
|
82 |
-
"""Loads the model and tokenizer from the Hugging Face model repo."""
|
83 |
-
try:
|
84 |
-
# Check if running in hugging face
|
85 |
-
if 'HF_MODEL_ID' in os.environ:
|
86 |
-
# Load tokenizer
|
87 |
-
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
88 |
-
vocab_size = len(tokenizer)
|
89 |
-
|
90 |
-
model = build_model(vocab_size)
|
91 |
-
|
92 |
-
#Load model and optimizer
|
93 |
-
checkpoint_files = [f for f in os.listdir(".") if f.endswith('.pth')]
|
94 |
-
if not checkpoint_files:
|
95 |
-
print("No checkpoint found. Please train the model first.")
|
96 |
-
return
|
97 |
-
|
98 |
-
checkpoint_path = checkpoint_files[0]
|
99 |
-
|
100 |
-
checkpoint = torch.load(checkpoint_path, map_location=device)
|
101 |
-
model.load_state_dict(checkpoint['model_state_dict'])
|
102 |
-
|
103 |
-
model.to(device)
|
104 |
-
model.eval()
|
105 |
-
print(f"Model loaded on device: {device}")
|
106 |
-
else:
|
107 |
-
# Load tokenizer
|
108 |
-
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
109 |
-
vocab_size = len(tokenizer)
|
110 |
-
|
111 |
-
model = build_model(vocab_size)
|
112 |
-
|
113 |
-
#Load model and optimizer
|
114 |
-
checkpoint_path = input("Enter the path to your .pth checkpoint file: ")
|
115 |
-
|
116 |
-
checkpoint = torch.load(checkpoint_path, map_location=device)
|
117 |
-
model.load_state_dict(checkpoint['model_state_dict'])
|
118 |
-
|
119 |
-
model.to(device)
|
120 |
-
model.eval()
|
121 |
-
print(f"Model loaded on device: {device}")
|
122 |
-
return model, tokenizer
|
123 |
-
except Exception as e:
|
124 |
-
print(f"Error loading model or tokenizer: {e}")
|
125 |
-
return None, None
|
126 |
-
|
127 |
-
|
128 |
-
def gradio_chat(model, tokenizer, device="cpu", max_length = 100, temperature = 0.8):
|
129 |
-
"""Defines the gradio chatbot interaction."""
|
130 |
-
def respond(message, chat_history):
|
131 |
-
bot_message = chat_with_model(message, model, tokenizer, device=device, max_length=max_length, temperature = temperature)
|
132 |
-
chat_history.append((message, bot_message))
|
133 |
-
return "", chat_history
|
134 |
-
|
135 |
-
with gr.Blocks() as demo:
|
136 |
-
chatbot = gr.Chatbot()
|
137 |
-
msg = gr.Textbox()
|
138 |
-
clear = gr.Button("Clear")
|
139 |
-
|
140 |
-
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
141 |
-
clear.click(lambda: None, None, chatbot, queue=False)
|
142 |
-
|
143 |
-
return demo
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
-
|
148 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
149 |
-
print(f"Using device: {device}")
|
150 |
-
|
151 |
-
model, tokenizer = load_model_and_tokenizer("elapt1c/ElapticAI-1a", device = device)
|
152 |
-
if model and tokenizer:
|
153 |
-
#launch the gradio interface.
|
154 |
-
demo = gradio_chat(model, tokenizer, device = device)
|
155 |
-
demo.launch()
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Model and tokenizer details
|
8 |
+
model_repo = "elapt1c/ElapticAI-1a"
|
9 |
+
model_filename = "pytorch_model.bin" # Assuming the model is saved as pytorch_model.bin, adjust if needed. Check the HF repo.
|
10 |
+
tokenizer_name = "microsoft/DialoGPT-medium"
|
11 |
+
|
12 |
+
# Device configuration
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
|
15 |
+
# Load tokenizer
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
17 |
+
|
18 |
+
# Load model configuration
|
19 |
+
config = AutoConfig.from_pretrained("microsoft/DialoGPT-medium")
|
20 |
+
# Initialize model from config (important to use the same architecture)
|
21 |
+
model = AutoModelForCausalLM.from_config(config)
|
22 |
+
|
23 |
+
# Download and load model weights
|
24 |
+
try:
|
25 |
+
pth_filepath = hf_hub_download(repo_id=model_repo, filename=model_filename)
|
26 |
+
checkpoint = torch.load(pth_filepath, map_location=device)
|
27 |
+
|
28 |
+
# Handle different checkpoint saving formats if needed.
|
29 |
+
# If your checkpoint is just the state_dict, load it directly.
|
30 |
+
if 'model_state_dict' in checkpoint:
|
31 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
32 |
+
elif 'state_dict' in checkpoint:
|
33 |
+
model.load_state_dict(checkpoint['state_dict'])
|
34 |
+
else:
|
35 |
+
# Assume checkpoint is just the raw state_dict
|
36 |
+
model.load_state_dict(checkpoint)
|
37 |
+
|
38 |
+
print(f"Successfully loaded model weights from {model_repo}/{model_filename}")
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error loading model: {e}")
|
41 |
+
print("Please ensure the model repository and filename are correct.")
|
42 |
+
raise e # It's better to raise the error in a Space, so it's visible.
|
43 |
+
|
44 |
+
model.to(device)
|
45 |
+
model.eval() # Set model to evaluation mode
|
46 |
+
|
47 |
+
def chat_with_model(user_input, history=[]):
|
48 |
+
"""Chatbot function to interact with the loaded model."""
|
49 |
+
history_transformer_format = history_to_transformer_format(history)
|
50 |
+
input_text = tokenizer.eos_token.join(history_transformer_format + [user_input])
|
51 |
+
|
52 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt').to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
with torch.no_grad():
|
55 |
+
output = model.generate(
|
56 |
+
input_ids,
|
57 |
+
max_length=1000, # Adjust as needed
|
|
|
58 |
pad_token_id=tokenizer.eos_token_id,
|
59 |
+
temperature=0.7,
|
60 |
+
top_p=0.9
|
61 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
64 |
+
|
65 |
+
# Extract only the bot's last response, assuming it's after the last user input.
|
66 |
+
# This is a simple heuristic and might need adjustments based on training data format.
|
67 |
+
split_response = response.split(tokenizer.eos_token)
|
68 |
+
bot_response = split_response[-1].strip()
|
69 |
+
|
70 |
+
history.append((user_input, bot_response))
|
71 |
+
return bot_response, history
|
72 |
+
|
73 |
+
def history_to_transformer_format(history):
|
74 |
+
"""Convert gradio history to a list of strings for transformer input."""
|
75 |
+
history_formatted = []
|
76 |
+
for user_msg, bot_msg in history:
|
77 |
+
history_formatted.append(user_msg)
|
78 |
+
history_formatted.append(bot_msg)
|
79 |
+
return history_formatted
|
80 |
+
|
81 |
+
|
82 |
+
iface = gr.ChatInterface(
|
83 |
+
fn=chat_with_model,
|
84 |
+
inputs=gr.Chatbox(placeholder="Type your message here..."),
|
85 |
+
outputs=gr.Chatbot(),
|
86 |
+
title="ElapticAI-1a Chatbot",
|
87 |
+
description="Simple chatbot interface for ElapticAI-1a model. Talk to the model and see its responses!",
|
88 |
+
examples=[
|
89 |
+
["Hello"],
|
90 |
+
["How are you?"],
|
91 |
+
["Tell me a joke"]
|
92 |
+
]
|
93 |
+
)
|
94 |
|
95 |
if __name__ == "__main__":
|
96 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|