Spaces:
Runtime error
Runtime error
update app.py
Browse files
app.py
CHANGED
@@ -15,22 +15,28 @@ from trellis.pipelines import TrellisImageTo3DPipeline
|
|
15 |
from trellis.representations import Gaussian, MeshExtractResult
|
16 |
from trellis.utils import render_utils, postprocessing_utils
|
17 |
|
18 |
-
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
21 |
os.makedirs(TMP_DIR, exist_ok=True)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def start_session(req: gr.Request):
|
25 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
26 |
os.makedirs(user_dir, exist_ok=True)
|
27 |
|
28 |
-
|
29 |
def end_session(req: gr.Request):
|
30 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
31 |
shutil.rmtree(user_dir)
|
32 |
|
33 |
-
|
34 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
35 |
"""
|
36 |
Preprocess the input image.
|
@@ -44,7 +50,6 @@ def preprocess_image(image: Image.Image) -> Image.Image:
|
|
44 |
processed_image = pipeline.preprocess_image(image)
|
45 |
return processed_image
|
46 |
|
47 |
-
|
48 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
49 |
"""
|
50 |
Preprocess a list of input images.
|
@@ -59,7 +64,6 @@ def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image
|
|
59 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
60 |
return processed_images
|
61 |
|
62 |
-
|
63 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
64 |
return {
|
65 |
'gaussian': {
|
@@ -76,7 +80,6 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
76 |
},
|
77 |
}
|
78 |
|
79 |
-
|
80 |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
81 |
gs = Gaussian(
|
82 |
aabb=state['gaussian']['aabb'],
|
@@ -99,14 +102,12 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
99 |
|
100 |
return gs, mesh
|
101 |
|
102 |
-
|
103 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
104 |
"""
|
105 |
Get the random seed.
|
106 |
"""
|
107 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
108 |
|
109 |
-
|
110 |
@spaces.GPU
|
111 |
def image_to_3d(
|
112 |
image: Image.Image,
|
@@ -122,21 +123,6 @@ def image_to_3d(
|
|
122 |
) -> Tuple[dict, str]:
|
123 |
"""
|
124 |
Convert an image to a 3D model.
|
125 |
-
|
126 |
-
Args:
|
127 |
-
image (Image.Image): The input image.
|
128 |
-
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
|
129 |
-
is_multiimage (bool): Whether is in multi-image mode.
|
130 |
-
seed (int): The random seed.
|
131 |
-
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
132 |
-
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
133 |
-
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
134 |
-
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
135 |
-
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
|
136 |
-
|
137 |
-
Returns:
|
138 |
-
dict: The information of the generated 3D model.
|
139 |
-
str: The path to the video of the 3D model.
|
140 |
"""
|
141 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
142 |
if not is_multiimage:
|
@@ -179,7 +165,6 @@ def image_to_3d(
|
|
179 |
torch.cuda.empty_cache()
|
180 |
return state, video_path
|
181 |
|
182 |
-
|
183 |
@spaces.GPU(duration=90)
|
184 |
def extract_glb(
|
185 |
state: dict,
|
@@ -189,14 +174,6 @@ def extract_glb(
|
|
189 |
) -> Tuple[str, str]:
|
190 |
"""
|
191 |
Extract a GLB file from the 3D model.
|
192 |
-
|
193 |
-
Args:
|
194 |
-
state (dict): The state of the generated 3D model.
|
195 |
-
mesh_simplify (float): The mesh simplification factor.
|
196 |
-
texture_size (int): The texture resolution.
|
197 |
-
|
198 |
-
Returns:
|
199 |
-
str: The path to the extracted GLB file.
|
200 |
"""
|
201 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
202 |
gs, mesh = unpack_state(state)
|
@@ -206,17 +183,10 @@ def extract_glb(
|
|
206 |
torch.cuda.empty_cache()
|
207 |
return glb_path, glb_path
|
208 |
|
209 |
-
|
210 |
@spaces.GPU
|
211 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
212 |
"""
|
213 |
Extract a Gaussian file from the 3D model.
|
214 |
-
|
215 |
-
Args:
|
216 |
-
state (dict): The state of the generated 3D model.
|
217 |
-
|
218 |
-
Returns:
|
219 |
-
str: The path to the extracted Gaussian file.
|
220 |
"""
|
221 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
222 |
gs, _ = unpack_state(state)
|
@@ -225,7 +195,6 @@ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
|
225 |
torch.cuda.empty_cache()
|
226 |
return gaussian_path, gaussian_path
|
227 |
|
228 |
-
|
229 |
def prepare_multi_example() -> List[Image.Image]:
|
230 |
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
|
231 |
images = []
|
@@ -239,7 +208,6 @@ def prepare_multi_example() -> List[Image.Image]:
|
|
239 |
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
|
240 |
return images
|
241 |
|
242 |
-
|
243 |
def split_image(image: Image.Image) -> List[Image.Image]:
|
244 |
"""
|
245 |
Split an image into multiple views.
|
@@ -254,7 +222,6 @@ def split_image(image: Image.Image) -> List[Image.Image]:
|
|
254 |
images.append(Image.fromarray(image[:, s:e+1]))
|
255 |
return [preprocess_image(image) for image in images]
|
256 |
|
257 |
-
|
258 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
259 |
gr.Markdown("""
|
260 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
@@ -401,14 +368,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
401 |
lambda: gr.Button(interactive=False),
|
402 |
outputs=[download_glb],
|
403 |
)
|
404 |
-
|
405 |
|
406 |
# Launch the Gradio app
|
407 |
if __name__ == "__main__":
|
408 |
-
|
409 |
-
pipeline.cuda()
|
410 |
-
try:
|
411 |
-
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
412 |
-
except:
|
413 |
-
pass
|
414 |
-
demo.launch()
|
|
|
15 |
from trellis.representations import Gaussian, MeshExtractResult
|
16 |
from trellis.utils import render_utils, postprocessing_utils
|
17 |
|
18 |
+
# Constants
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
21 |
os.makedirs(TMP_DIR, exist_ok=True)
|
22 |
|
23 |
+
# Initialize pipeline at the module level
|
24 |
+
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
25 |
+
pipeline.cuda()
|
26 |
+
try:
|
27 |
+
# Preload rembg
|
28 |
+
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
29 |
+
except:
|
30 |
+
pass
|
31 |
|
32 |
def start_session(req: gr.Request):
|
33 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
34 |
os.makedirs(user_dir, exist_ok=True)
|
35 |
|
|
|
36 |
def end_session(req: gr.Request):
|
37 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
38 |
shutil.rmtree(user_dir)
|
39 |
|
|
|
40 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
41 |
"""
|
42 |
Preprocess the input image.
|
|
|
50 |
processed_image = pipeline.preprocess_image(image)
|
51 |
return processed_image
|
52 |
|
|
|
53 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
54 |
"""
|
55 |
Preprocess a list of input images.
|
|
|
64 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
65 |
return processed_images
|
66 |
|
|
|
67 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
68 |
return {
|
69 |
'gaussian': {
|
|
|
80 |
},
|
81 |
}
|
82 |
|
|
|
83 |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
84 |
gs = Gaussian(
|
85 |
aabb=state['gaussian']['aabb'],
|
|
|
102 |
|
103 |
return gs, mesh
|
104 |
|
|
|
105 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
106 |
"""
|
107 |
Get the random seed.
|
108 |
"""
|
109 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
110 |
|
|
|
111 |
@spaces.GPU
|
112 |
def image_to_3d(
|
113 |
image: Image.Image,
|
|
|
123 |
) -> Tuple[dict, str]:
|
124 |
"""
|
125 |
Convert an image to a 3D model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
"""
|
127 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
128 |
if not is_multiimage:
|
|
|
165 |
torch.cuda.empty_cache()
|
166 |
return state, video_path
|
167 |
|
|
|
168 |
@spaces.GPU(duration=90)
|
169 |
def extract_glb(
|
170 |
state: dict,
|
|
|
174 |
) -> Tuple[str, str]:
|
175 |
"""
|
176 |
Extract a GLB file from the 3D model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
"""
|
178 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
179 |
gs, mesh = unpack_state(state)
|
|
|
183 |
torch.cuda.empty_cache()
|
184 |
return glb_path, glb_path
|
185 |
|
|
|
186 |
@spaces.GPU
|
187 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
188 |
"""
|
189 |
Extract a Gaussian file from the 3D model.
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
"""
|
191 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
192 |
gs, _ = unpack_state(state)
|
|
|
195 |
torch.cuda.empty_cache()
|
196 |
return gaussian_path, gaussian_path
|
197 |
|
|
|
198 |
def prepare_multi_example() -> List[Image.Image]:
|
199 |
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
|
200 |
images = []
|
|
|
208 |
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
|
209 |
return images
|
210 |
|
|
|
211 |
def split_image(image: Image.Image) -> List[Image.Image]:
|
212 |
"""
|
213 |
Split an image into multiple views.
|
|
|
222 |
images.append(Image.fromarray(image[:, s:e+1]))
|
223 |
return [preprocess_image(image) for image in images]
|
224 |
|
|
|
225 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
226 |
gr.Markdown("""
|
227 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
|
|
368 |
lambda: gr.Button(interactive=False),
|
369 |
outputs=[download_glb],
|
370 |
)
|
|
|
371 |
|
372 |
# Launch the Gradio app
|
373 |
if __name__ == "__main__":
|
374 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|