|
|
|
import math |
|
from urllib.request import proxy_bypass |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
|
|
|
|
class VectorQuantizer(nn.Module): |
|
""" |
|
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly |
|
avoids costly matrix multiplications and allows for post-hoc remapping of indices. |
|
""" |
|
|
|
|
|
|
|
|
|
def __init__(self, |
|
n_e, |
|
e_dim, |
|
beta, |
|
remap=None, |
|
unknown_index="random", |
|
sane_index_shape=False, |
|
legacy=True): |
|
super().__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim |
|
self.beta = beta |
|
self.legacy = legacy |
|
|
|
self.embedding = nn.Embedding(self.n_e, self.e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
|
|
self.remap = remap |
|
if self.remap is not None: |
|
self.register_buffer("used", torch.tensor(np.load(self.remap))) |
|
self.re_embed = self.used.shape[0] |
|
self.unknown_index = unknown_index |
|
if self.unknown_index == "extra": |
|
self.unknown_index = self.re_embed |
|
self.re_embed = self.re_embed + 1 |
|
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. " |
|
f"Using {self.unknown_index} for unknown indices.") |
|
else: |
|
self.re_embed = n_e |
|
|
|
self.sane_index_shape = sane_index_shape |
|
|
|
def remap_to_used(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
match = (inds[:, :, None] == used[None, None, ...]).long() |
|
new = match.argmax(-1) |
|
unknown = match.sum(2) < 1 |
|
if self.unknown_index == "random": |
|
new[unknown] = torch.randint( |
|
0, self.re_embed, |
|
size=new[unknown].shape).to(device=new.device) |
|
else: |
|
new[unknown] = self.unknown_index |
|
return new.reshape(ishape) |
|
|
|
def unmap_to_all(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
if self.re_embed > self.used.shape[0]: |
|
inds[inds >= self.used.shape[0]] = 0 |
|
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) |
|
return back.reshape(ishape) |
|
|
|
def forward(self, z, temp=None, rescale_logits=False, return_logits=False): |
|
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel" |
|
assert rescale_logits == False, "Only for interface compatible with Gumbel" |
|
assert return_logits == False, "Only for interface compatible with Gumbel" |
|
|
|
z = rearrange(z, 'b c h w -> b h w c').contiguous() |
|
z_flattened = z.view(-1, self.e_dim) |
|
|
|
|
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ |
|
torch.sum(self.embedding.weight**2, dim=1) - 2 * \ |
|
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n')) |
|
|
|
min_encoding_indices = torch.argmin(d, dim=1) |
|
z_q = self.embedding(min_encoding_indices).view(z.shape) |
|
perplexity = None |
|
min_encodings = None |
|
|
|
|
|
if not self.legacy: |
|
loss = self.beta * torch.mean((z_q.detach()-z)**2) + \ |
|
torch.mean((z_q - z.detach()) ** 2) |
|
else: |
|
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \ |
|
torch.mean((z_q - z.detach()) ** 2) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous() |
|
|
|
if self.remap is not None: |
|
min_encoding_indices = min_encoding_indices.reshape( |
|
z.shape[0], -1) |
|
min_encoding_indices = self.remap_to_used(min_encoding_indices) |
|
min_encoding_indices = min_encoding_indices.reshape(-1, |
|
1) |
|
|
|
if self.sane_index_shape: |
|
min_encoding_indices = min_encoding_indices.reshape( |
|
z_q.shape[0], z_q.shape[2], z_q.shape[3]) |
|
|
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices) |
|
|
|
def get_codebook_entry(self, indices, shape): |
|
|
|
if self.remap is not None: |
|
indices = indices.reshape(shape[0], -1) |
|
indices = self.unmap_to_all(indices) |
|
indices = indices.reshape(-1) |
|
|
|
|
|
z_q = self.embedding(indices) |
|
|
|
if shape is not None: |
|
z_q = z_q.view(shape) |
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q |
|
|
|
|
|
class VectorQuantizerTexture(nn.Module): |
|
""" |
|
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly |
|
avoids costly matrix multiplications and allows for post-hoc remapping of indices. |
|
""" |
|
|
|
|
|
|
|
|
|
def __init__(self, |
|
n_e, |
|
e_dim, |
|
beta, |
|
remap=None, |
|
unknown_index="random", |
|
sane_index_shape=False, |
|
legacy=True): |
|
super().__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim |
|
self.beta = beta |
|
self.legacy = legacy |
|
|
|
|
|
self.embedding_list = nn.ModuleList( |
|
[nn.Embedding(self.n_e, self.e_dim) for i in range(18)]) |
|
for embedding in self.embedding_list: |
|
embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
|
|
self.remap = remap |
|
if self.remap is not None: |
|
self.register_buffer("used", torch.tensor(np.load(self.remap))) |
|
self.re_embed = self.used.shape[0] |
|
self.unknown_index = unknown_index |
|
if self.unknown_index == "extra": |
|
self.unknown_index = self.re_embed |
|
self.re_embed = self.re_embed + 1 |
|
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. " |
|
f"Using {self.unknown_index} for unknown indices.") |
|
else: |
|
self.re_embed = n_e |
|
|
|
self.sane_index_shape = sane_index_shape |
|
|
|
def remap_to_used(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
match = (inds[:, :, None] == used[None, None, ...]).long() |
|
new = match.argmax(-1) |
|
unknown = match.sum(2) < 1 |
|
if self.unknown_index == "random": |
|
new[unknown] = torch.randint( |
|
0, self.re_embed, |
|
size=new[unknown].shape).to(device=new.device) |
|
else: |
|
new[unknown] = self.unknown_index |
|
return new.reshape(ishape) |
|
|
|
def unmap_to_all(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
if self.re_embed > self.used.shape[0]: |
|
inds[inds >= self.used.shape[0]] = 0 |
|
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) |
|
return back.reshape(ishape) |
|
|
|
def forward(self, |
|
z, |
|
segm_map, |
|
temp=None, |
|
rescale_logits=False, |
|
return_logits=False): |
|
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel" |
|
assert rescale_logits == False, "Only for interface compatible with Gumbel" |
|
assert return_logits == False, "Only for interface compatible with Gumbel" |
|
|
|
segm_map = F.interpolate(segm_map, size=z.size()[2:], mode='nearest') |
|
|
|
z = rearrange(z, 'b c h w -> b h w c').contiguous() |
|
z_flattened = z.view(-1, self.e_dim) |
|
|
|
|
|
segm_map_flatten = segm_map.view(-1) |
|
|
|
z_q = torch.zeros_like(z_flattened) |
|
min_encoding_indices_list = [] |
|
min_encoding_indices_continual = torch.full( |
|
segm_map_flatten.size(), |
|
fill_value=-1, |
|
dtype=torch.long, |
|
device=segm_map_flatten.device) |
|
for codebook_idx in range(18): |
|
min_encoding_indices = torch.full( |
|
segm_map_flatten.size(), |
|
fill_value=-1, |
|
dtype=torch.long, |
|
device=segm_map_flatten.device) |
|
if torch.sum(segm_map_flatten == codebook_idx) > 0: |
|
z_selected = z_flattened[segm_map_flatten == codebook_idx] |
|
|
|
d_selected = torch.sum( |
|
z_selected**2, dim=1, keepdim=True) + torch.sum( |
|
self.embedding_list[codebook_idx].weight**2, |
|
dim=1) - 2 * torch.einsum( |
|
'bd,dn->bn', z_selected, |
|
rearrange(self.embedding_list[codebook_idx].weight, |
|
'n d -> d n')) |
|
min_encoding_indices_selected = torch.argmin(d_selected, dim=1) |
|
z_q_selected = self.embedding_list[codebook_idx]( |
|
min_encoding_indices_selected) |
|
z_q[segm_map_flatten == codebook_idx] = z_q_selected |
|
min_encoding_indices[ |
|
segm_map_flatten == |
|
codebook_idx] = min_encoding_indices_selected |
|
min_encoding_indices_continual[ |
|
segm_map_flatten == |
|
codebook_idx] = min_encoding_indices_selected + 1024 * codebook_idx |
|
min_encoding_indices = min_encoding_indices.reshape( |
|
z.shape[0], z.shape[1], z.shape[2]) |
|
min_encoding_indices_list.append(min_encoding_indices) |
|
|
|
min_encoding_indices_continual = min_encoding_indices_continual.reshape( |
|
z.shape[0], z.shape[1], z.shape[2]) |
|
z_q = z_q.view(z.shape) |
|
perplexity = None |
|
|
|
|
|
if not self.legacy: |
|
loss = self.beta * torch.mean((z_q.detach()-z)**2) + \ |
|
torch.mean((z_q - z.detach()) ** 2) |
|
else: |
|
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \ |
|
torch.mean((z_q - z.detach()) ** 2) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous() |
|
|
|
return z_q, loss, (perplexity, min_encoding_indices_continual, |
|
min_encoding_indices_list) |
|
|
|
def get_codebook_entry(self, indices_list, segm_map, shape): |
|
|
|
segm_map = F.interpolate( |
|
segm_map, size=(shape[1], shape[2]), mode='nearest') |
|
segm_map_flatten = segm_map.view(-1) |
|
|
|
z_q = torch.zeros((shape[0] * shape[1] * shape[2]), |
|
self.e_dim).to(segm_map.device) |
|
for codebook_idx in range(18): |
|
if torch.sum(segm_map_flatten == codebook_idx) > 0: |
|
min_encoding_indices_selected = indices_list[ |
|
codebook_idx].view(-1)[segm_map_flatten == codebook_idx] |
|
z_q_selected = self.embedding_list[codebook_idx]( |
|
min_encoding_indices_selected) |
|
z_q[segm_map_flatten == codebook_idx] = z_q_selected |
|
|
|
z_q = z_q.view(shape) |
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q |
|
|
|
|
|
def sample_patches(inputs, patch_size=3, stride=1): |
|
"""Extract sliding local patches from an input feature tensor. |
|
The sampled pathes are row-major. |
|
Args: |
|
inputs (Tensor): the input feature maps, shape: (n, c, h, w). |
|
patch_size (int): the spatial size of sampled patches. Default: 3. |
|
stride (int): the stride of sampling. Default: 1. |
|
Returns: |
|
patches (Tensor): extracted patches, shape: (n, c * patch_size * |
|
patch_size, n_patches). |
|
""" |
|
|
|
patches = F.unfold(inputs, (patch_size, patch_size), stride=stride) |
|
|
|
return patches |
|
|
|
|
|
class VectorQuantizerSpatialTextureAware(nn.Module): |
|
""" |
|
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly |
|
avoids costly matrix multiplications and allows for post-hoc remapping of indices. |
|
""" |
|
|
|
|
|
|
|
|
|
def __init__(self, |
|
n_e, |
|
e_dim, |
|
beta, |
|
spatial_size, |
|
remap=None, |
|
unknown_index="random", |
|
sane_index_shape=False, |
|
legacy=True): |
|
super().__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim * spatial_size * spatial_size |
|
self.beta = beta |
|
self.legacy = legacy |
|
self.spatial_size = spatial_size |
|
|
|
|
|
self.embedding_list = nn.ModuleList( |
|
[nn.Embedding(self.n_e, self.e_dim) for i in range(18)]) |
|
for embedding in self.embedding_list: |
|
embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
|
|
self.remap = remap |
|
if self.remap is not None: |
|
self.register_buffer("used", torch.tensor(np.load(self.remap))) |
|
self.re_embed = self.used.shape[0] |
|
self.unknown_index = unknown_index |
|
if self.unknown_index == "extra": |
|
self.unknown_index = self.re_embed |
|
self.re_embed = self.re_embed + 1 |
|
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. " |
|
f"Using {self.unknown_index} for unknown indices.") |
|
else: |
|
self.re_embed = n_e |
|
|
|
self.sane_index_shape = sane_index_shape |
|
|
|
def forward(self, |
|
z, |
|
segm_map, |
|
temp=None, |
|
rescale_logits=False, |
|
return_logits=False): |
|
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel" |
|
assert rescale_logits == False, "Only for interface compatible with Gumbel" |
|
assert return_logits == False, "Only for interface compatible with Gumbel" |
|
|
|
segm_map = F.interpolate( |
|
segm_map, |
|
size=(z.size(2) // self.spatial_size, |
|
z.size(3) // self.spatial_size), |
|
mode='nearest') |
|
|
|
|
|
|
|
z_patches = sample_patches( |
|
z, patch_size=self.spatial_size, |
|
stride=self.spatial_size).permute(0, 2, 1) |
|
z_patches_flattened = z_patches.reshape(-1, self.e_dim) |
|
|
|
|
|
|
|
segm_map_flatten = segm_map.view(-1) |
|
|
|
z_q = torch.zeros_like(z_patches_flattened) |
|
min_encoding_indices_list = [] |
|
min_encoding_indices_continual = torch.full( |
|
segm_map_flatten.size(), |
|
fill_value=-1, |
|
dtype=torch.long, |
|
device=segm_map_flatten.device) |
|
|
|
for codebook_idx in range(18): |
|
min_encoding_indices = torch.full( |
|
segm_map_flatten.size(), |
|
fill_value=-1, |
|
dtype=torch.long, |
|
device=segm_map_flatten.device) |
|
if torch.sum(segm_map_flatten == codebook_idx) > 0: |
|
z_selected = z_patches_flattened[segm_map_flatten == |
|
codebook_idx] |
|
|
|
d_selected = torch.sum( |
|
z_selected**2, dim=1, keepdim=True) + torch.sum( |
|
self.embedding_list[codebook_idx].weight**2, |
|
dim=1) - 2 * torch.einsum( |
|
'bd,dn->bn', z_selected, |
|
rearrange(self.embedding_list[codebook_idx].weight, |
|
'n d -> d n')) |
|
min_encoding_indices_selected = torch.argmin(d_selected, dim=1) |
|
z_q_selected = self.embedding_list[codebook_idx]( |
|
min_encoding_indices_selected) |
|
z_q[segm_map_flatten == codebook_idx] = z_q_selected |
|
min_encoding_indices[ |
|
segm_map_flatten == |
|
codebook_idx] = min_encoding_indices_selected |
|
min_encoding_indices_continual[ |
|
segm_map_flatten == |
|
codebook_idx] = min_encoding_indices_selected + self.n_e * codebook_idx |
|
min_encoding_indices = min_encoding_indices.reshape( |
|
z_patches.shape[0], segm_map.shape[2], segm_map.shape[3]) |
|
min_encoding_indices_list.append(min_encoding_indices) |
|
|
|
z_q = F.fold( |
|
z_q.view(z_patches.shape).permute(0, 2, 1), |
|
z.size()[2:], |
|
kernel_size=(self.spatial_size, self.spatial_size), |
|
stride=self.spatial_size) |
|
|
|
perplexity = None |
|
|
|
|
|
if not self.legacy: |
|
loss = self.beta * torch.mean((z_q.detach()-z)**2) + \ |
|
torch.mean((z_q - z.detach()) ** 2) |
|
else: |
|
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \ |
|
torch.mean((z_q - z.detach()) ** 2) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
return z_q, loss, (perplexity, min_encoding_indices_continual, |
|
min_encoding_indices_list) |
|
|
|
def get_codebook_entry(self, indices_list, segm_map, shape): |
|
|
|
segm_map = F.interpolate( |
|
segm_map, size=(shape[1], shape[2]), mode='nearest') |
|
segm_map_flatten = segm_map.view(-1) |
|
|
|
z_q = torch.zeros((shape[0] * shape[1] * shape[2]), |
|
self.e_dim).to(segm_map.device) |
|
for codebook_idx in range(18): |
|
if torch.sum(segm_map_flatten == codebook_idx) > 0: |
|
min_encoding_indices_selected = indices_list[ |
|
codebook_idx].view(-1)[segm_map_flatten == codebook_idx] |
|
z_q_selected = self.embedding_list[codebook_idx]( |
|
min_encoding_indices_selected) |
|
z_q[segm_map_flatten == codebook_idx] = z_q_selected |
|
|
|
z_q = F.fold( |
|
z_q.view(((shape[0], shape[1] * shape[2], |
|
self.e_dim))).permute(0, 2, 1), |
|
(shape[1] * self.spatial_size, shape[2] * self.spatial_size), |
|
kernel_size=(self.spatial_size, self.spatial_size), |
|
stride=self.spatial_size) |
|
|
|
return z_q |
|
|
|
|
|
def get_timestep_embedding(timesteps, embedding_dim): |
|
""" |
|
This matches the implementation in Denoising Diffusion Probabilistic Models: |
|
From Fairseq. |
|
Build sinusoidal embeddings. |
|
This matches the implementation in tensor2tensor, but differs slightly |
|
from the description in Section 3.5 of "Attention Is All You Need". |
|
""" |
|
assert len(timesteps.shape) == 1 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) |
|
emb = emb.to(device=timesteps.device) |
|
emb = timesteps.float()[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) |
|
return emb |
|
|
|
|
|
def nonlinearity(x): |
|
|
|
return x * torch.sigmoid(x) |
|
|
|
|
|
def Normalize(in_channels): |
|
return torch.nn.GroupNorm( |
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) |
|
|
|
|
|
class Upsample(nn.Module): |
|
|
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
def forward(self, x): |
|
x = torch.nn.functional.interpolate( |
|
x, scale_factor=2.0, mode="nearest") |
|
if self.with_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
|
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
|
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=2, padding=0) |
|
|
|
def forward(self, x): |
|
if self.with_conv: |
|
pad = (0, 1, 0, 1) |
|
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
else: |
|
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) |
|
return x |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
|
|
def __init__(self, |
|
*, |
|
in_channels, |
|
out_channels=None, |
|
conv_shortcut=False, |
|
dropout, |
|
temb_channels=512): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
|
|
self.norm1 = Normalize(in_channels) |
|
self.conv1 = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
if temb_channels > 0: |
|
self.temb_proj = torch.nn.Linear(temb_channels, out_channels) |
|
self.norm2 = Normalize(out_channels) |
|
self.dropout = torch.nn.Dropout(dropout) |
|
self.conv2 = torch.nn.Conv2d( |
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = torch.nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
else: |
|
self.nin_shortcut = torch.nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
|
|
def forward(self, x, temb): |
|
h = x |
|
h = self.norm1(h) |
|
h = nonlinearity(h) |
|
h = self.conv1(h) |
|
|
|
if temb is not None: |
|
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] |
|
|
|
h = self.norm2(h) |
|
h = nonlinearity(h) |
|
h = self.dropout(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
x = self.conv_shortcut(x) |
|
else: |
|
x = self.nin_shortcut(x) |
|
|
|
return x + h |
|
|
|
|
|
class AttnBlock(nn.Module): |
|
|
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = Normalize(in_channels) |
|
self.q = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
self.k = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
self.v = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
self.proj_out = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
|
|
def forward(self, x): |
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
|
|
b, c, h, w = q.shape |
|
q = q.reshape(b, c, h * w) |
|
q = q.permute(0, 2, 1) |
|
k = k.reshape(b, c, h * w) |
|
w_ = torch.bmm(q, k) |
|
w_ = w_ * (int(c)**(-0.5)) |
|
w_ = torch.nn.functional.softmax(w_, dim=2) |
|
|
|
|
|
v = v.reshape(b, c, h * w) |
|
w_ = w_.permute(0, 2, 1) |
|
h_ = torch.bmm( |
|
v, w_) |
|
h_ = h_.reshape(b, c, h, w) |
|
|
|
h_ = self.proj_out(h_) |
|
|
|
return x + h_ |
|
|
|
|
|
class Model(nn.Module): |
|
|
|
def __init__(self, |
|
*, |
|
ch, |
|
out_ch, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks, |
|
attn_resolutions, |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
in_channels, |
|
resolution, |
|
use_timestep=True): |
|
super().__init__() |
|
self.ch = ch |
|
self.temb_ch = self.ch * 4 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
|
|
self.use_timestep = use_timestep |
|
if self.use_timestep: |
|
|
|
self.temb = nn.Module() |
|
self.temb.dense = nn.ModuleList([ |
|
torch.nn.Linear(self.ch, self.temb_ch), |
|
torch.nn.Linear(self.temb_ch, self.temb_ch), |
|
]) |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
in_channels, self.ch, kernel_size=3, stride=1, padding=1) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1, ) + tuple(ch_mult) |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(AttnBlock(block_in)) |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions - 1: |
|
down.downsample = Downsample(block_in, resamp_with_conv) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
skip_in = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks + 1): |
|
if i_block == self.num_res_blocks: |
|
skip_in = ch * in_ch_mult[i_level] |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in + skip_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(AttnBlock(block_in)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in, resamp_with_conv) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, out_ch, kernel_size=3, stride=1, padding=1) |
|
|
|
def forward(self, x, t=None): |
|
|
|
|
|
if self.use_timestep: |
|
|
|
assert t is not None |
|
temb = get_timestep_embedding(t, self.ch) |
|
temb = self.temb.dense[0](temb) |
|
temb = nonlinearity(temb) |
|
temb = self.temb.dense[1](temb) |
|
else: |
|
temb = None |
|
|
|
|
|
hs = [self.conv_in(x)] |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](hs[-1], temb) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
hs.append(h) |
|
if i_level != self.num_resolutions - 1: |
|
hs.append(self.down[i_level].downsample(hs[-1])) |
|
|
|
|
|
h = hs[-1] |
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], |
|
dim=1), temb) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class Encoder(nn.Module): |
|
|
|
def __init__(self, |
|
ch, |
|
num_res_blocks, |
|
attn_resolutions, |
|
in_channels, |
|
resolution, |
|
z_channels, |
|
ch_mult=(1, 2, 4, 8), |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
double_z=True): |
|
super().__init__() |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
in_channels, self.ch, kernel_size=3, stride=1, padding=1) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1, ) + tuple(ch_mult) |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(AttnBlock(block_in)) |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions - 1: |
|
down.downsample = Downsample(block_in, resamp_with_conv) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, |
|
2 * z_channels if double_z else z_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, x): |
|
|
|
|
|
|
|
temb = None |
|
|
|
|
|
hs = [self.conv_in(x)] |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](hs[-1], temb) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
hs.append(h) |
|
if i_level != self.num_resolutions - 1: |
|
hs.append(self.down[i_level].downsample(hs[-1])) |
|
|
|
|
|
h = hs[-1] |
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class Decoder(nn.Module): |
|
|
|
def __init__(self, |
|
in_channels, |
|
resolution, |
|
z_channels, |
|
ch, |
|
out_ch, |
|
num_res_blocks, |
|
attn_resolutions, |
|
ch_mult=(1, 2, 4, 8), |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
give_pre_end=False): |
|
super().__init__() |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.give_pre_end = give_pre_end |
|
|
|
|
|
in_ch_mult = (1, ) + tuple(ch_mult) |
|
block_in = ch * ch_mult[self.num_resolutions - 1] |
|
curr_res = resolution // 2**(self.num_resolutions - 1) |
|
self.z_shape = (1, z_channels, curr_res, curr_res // 2) |
|
print("Working with z of shape {} = {} dimensions.".format( |
|
self.z_shape, np.prod(self.z_shape))) |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
z_channels, block_in, kernel_size=3, stride=1, padding=1) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks + 1): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(AttnBlock(block_in)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in, resamp_with_conv) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, out_ch, kernel_size=3, stride=1, padding=1) |
|
|
|
def forward(self, z, bot_h=None): |
|
|
|
self.last_z_shape = z.shape |
|
|
|
|
|
temb = None |
|
|
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block](h, temb) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
if i_level == 4 and bot_h is not None: |
|
h += bot_h |
|
|
|
|
|
if self.give_pre_end: |
|
return h |
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
def get_feature_top(self, z): |
|
|
|
self.last_z_shape = z.shape |
|
|
|
|
|
temb = None |
|
|
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block](h, temb) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
if i_level == 4: |
|
return h |
|
|
|
def get_feature_middle(self, z, mid_h): |
|
|
|
self.last_z_shape = z.shape |
|
|
|
|
|
temb = None |
|
|
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block](h, temb) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
if i_level == 4: |
|
h += mid_h |
|
if i_level == 3: |
|
return h |
|
|
|
|
|
class DecoderRes(nn.Module): |
|
|
|
def __init__(self, |
|
in_channels, |
|
resolution, |
|
z_channels, |
|
ch, |
|
num_res_blocks, |
|
ch_mult=(1, 2, 4, 8), |
|
dropout=0.0, |
|
give_pre_end=False): |
|
super().__init__() |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.give_pre_end = give_pre_end |
|
|
|
|
|
in_ch_mult = (1, ) + tuple(ch_mult) |
|
block_in = ch * ch_mult[self.num_resolutions - 1] |
|
curr_res = resolution // 2**(self.num_resolutions - 1) |
|
self.z_shape = (1, z_channels, curr_res, curr_res // 2) |
|
print("Working with z of shape {} = {} dimensions.".format( |
|
self.z_shape, np.prod(self.z_shape))) |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
z_channels, block_in, kernel_size=3, stride=1, padding=1) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
|
|
def forward(self, z): |
|
|
|
self.last_z_shape = z.shape |
|
|
|
|
|
temb = None |
|
|
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
return h |
|
|
|
|
|
|
|
class Discriminator(nn.Module): |
|
|
|
def __init__(self, nc, ndf, n_layers=3): |
|
super().__init__() |
|
|
|
layers = [ |
|
nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1), |
|
nn.LeakyReLU(0.2, True) |
|
] |
|
ndf_mult = 1 |
|
ndf_mult_prev = 1 |
|
for n in range(1, |
|
n_layers): |
|
ndf_mult_prev = ndf_mult |
|
ndf_mult = min(2**n, 8) |
|
layers += [ |
|
nn.Conv2d( |
|
ndf * ndf_mult_prev, |
|
ndf * ndf_mult, |
|
kernel_size=4, |
|
stride=2, |
|
padding=1, |
|
bias=False), |
|
nn.BatchNorm2d(ndf * ndf_mult), |
|
nn.LeakyReLU(0.2, True) |
|
] |
|
|
|
ndf_mult_prev = ndf_mult |
|
ndf_mult = min(2**n_layers, 8) |
|
|
|
layers += [ |
|
nn.Conv2d( |
|
ndf * ndf_mult_prev, |
|
ndf * ndf_mult, |
|
kernel_size=4, |
|
stride=1, |
|
padding=1, |
|
bias=False), |
|
nn.BatchNorm2d(ndf * ndf_mult), |
|
nn.LeakyReLU(0.2, True) |
|
] |
|
|
|
layers += [ |
|
nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1) |
|
] |
|
self.main = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
return self.main(x) |
|
|