Spaces:
Runtime error
Runtime error
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Dockerfile +29 -0
- app.py +211 -0
- cert.pem +32 -0
- cosyvoice/__init__.py +0 -0
- cosyvoice/bin/average_model.py +92 -0
- cosyvoice/bin/convert.py +168 -0
- cosyvoice/bin/export_jit.py +74 -0
- cosyvoice/bin/export_jit_cosyvoice2.py +60 -0
- cosyvoice/bin/export_onnx.py +112 -0
- cosyvoice/bin/export_onnx_cosyvoice2.py +110 -0
- cosyvoice/bin/export_trt_cosyvoce2.sh +3 -0
- cosyvoice/bin/inference.py +115 -0
- cosyvoice/bin/train.py +170 -0
- cosyvoice/cli/__init__.py +0 -0
- cosyvoice/cli/cosyvoice.py +167 -0
- cosyvoice/cli/frontend.py +213 -0
- cosyvoice/cli/model.py +421 -0
- cosyvoice/dataset/__init__.py +0 -0
- cosyvoice/dataset/dataset.py +164 -0
- cosyvoice/dataset/processor.py +431 -0
- cosyvoice/flow/decoder.py +299 -0
- cosyvoice/flow/flow.py +232 -0
- cosyvoice/flow/flow_matching.py +235 -0
- cosyvoice/flow/length_regulator.py +69 -0
- cosyvoice/hifigan/discriminator.py +140 -0
- cosyvoice/hifigan/f0_predictor.py +55 -0
- cosyvoice/hifigan/generator.py +411 -0
- cosyvoice/hifigan/hifigan.py +67 -0
- cosyvoice/llm/llm.py +340 -0
- cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +0 -0
- cosyvoice/tokenizer/tokenizer.py +277 -0
- cosyvoice/transformer/__init__.py +0 -0
- cosyvoice/transformer/activation.py +84 -0
- cosyvoice/transformer/attention.py +330 -0
- cosyvoice/transformer/convolution.py +145 -0
- cosyvoice/transformer/decoder.py +396 -0
- cosyvoice/transformer/decoder_layer.py +132 -0
- cosyvoice/transformer/embedding.py +294 -0
- cosyvoice/transformer/encoder.py +474 -0
- cosyvoice/transformer/encoder_layer.py +236 -0
- cosyvoice/transformer/label_smoothing_loss.py +96 -0
- cosyvoice/transformer/positionwise_feed_forward.py +115 -0
- cosyvoice/transformer/subsampling.py +383 -0
- cosyvoice/transformer/upsample_encoder.py +322 -0
- cosyvoice/utils/__init__.py +0 -0
- cosyvoice/utils/class_utils.py +70 -0
- cosyvoice/utils/common.py +166 -0
- cosyvoice/utils/executor.py +172 -0
- cosyvoice/utils/file_utils.py +51 -0
- cosyvoice/utils/frontend_utils.py +129 -0
Dockerfile
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu22.04
|
2 |
+
|
3 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
4 |
+
|
5 |
+
RUN apt-get update && apt-get install -y \
|
6 |
+
python3 \
|
7 |
+
python3-pip \
|
8 |
+
ffmpeg \
|
9 |
+
git \
|
10 |
+
sox \
|
11 |
+
libsox-dev \
|
12 |
+
&& rm -rf /var/lib/apt/lists/*
|
13 |
+
|
14 |
+
WORKDIR /app
|
15 |
+
|
16 |
+
COPY . .
|
17 |
+
|
18 |
+
RUN export PYTHONPATH=third_party/Matcha-TTS
|
19 |
+
|
20 |
+
RUN pip3 install --no-cache-dir -r requirements.txt
|
21 |
+
|
22 |
+
# Expose port for the main application
|
23 |
+
EXPOSE 7860
|
24 |
+
|
25 |
+
# Configure server to be accessible externally
|
26 |
+
ENV SERVER_NAME=0.0.0.0
|
27 |
+
ENV SERVER_PORT=7860
|
28 |
+
|
29 |
+
CMD ["python3", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
import sys
|
16 |
+
import argparse
|
17 |
+
import gradio as gr
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torchaudio
|
21 |
+
import random
|
22 |
+
import librosa
|
23 |
+
from funasr import AutoModel
|
24 |
+
from funasr.utils.postprocess_utils import rich_transcription_postprocess
|
25 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
26 |
+
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
|
27 |
+
|
28 |
+
from modelscope import snapshot_download
|
29 |
+
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
|
30 |
+
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
|
31 |
+
os.system('cd pretrained_models/CosyVoice-ttsfrd/ && pip install ttsfrd_dependency-0.1-py3-none-any.whl && pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl && apt install -y unzip && unzip resource.zip -d .')
|
32 |
+
|
33 |
+
from cosyvoice.cli.cosyvoice import CosyVoice2
|
34 |
+
from cosyvoice.utils.file_utils import load_wav, logging
|
35 |
+
from cosyvoice.utils.common import set_all_random_seed
|
36 |
+
|
37 |
+
inference_mode_list = ['3s极速复刻', '自然语言控制']
|
38 |
+
instruct_dict = {'3s极速复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入prompt文本\n3. 点击生成音频按钮',
|
39 |
+
'自然语言控制': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入instruct文本\n3. 点击生成音频按钮'}
|
40 |
+
stream_mode_list = [('否', False), ('是', True)]
|
41 |
+
max_val = 0.8
|
42 |
+
|
43 |
+
|
44 |
+
def generate_seed():
|
45 |
+
seed = random.randint(1, 100000000)
|
46 |
+
return {
|
47 |
+
"__type__": "update",
|
48 |
+
"value": seed
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
|
53 |
+
speech, _ = librosa.effects.trim(
|
54 |
+
speech, top_db=top_db,
|
55 |
+
frame_length=win_length,
|
56 |
+
hop_length=hop_length
|
57 |
+
)
|
58 |
+
if speech.abs().max() > max_val:
|
59 |
+
speech = speech / speech.abs().max() * max_val
|
60 |
+
speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1)
|
61 |
+
return speech
|
62 |
+
|
63 |
+
|
64 |
+
def change_instruction(mode_checkbox_group):
|
65 |
+
return instruct_dict[mode_checkbox_group]
|
66 |
+
|
67 |
+
def prompt_wav_recognition(prompt_wav):
|
68 |
+
res = asr_model.generate(input=prompt_wav,
|
69 |
+
language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech"
|
70 |
+
use_itn=True,
|
71 |
+
)
|
72 |
+
text = res[0]["text"].split('|>')[-1]
|
73 |
+
return text
|
74 |
+
|
75 |
+
def generate_audio(tts_text, mode_checkbox_group, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
|
76 |
+
seed, stream):
|
77 |
+
sft_dropdown, speed = '', 1.0
|
78 |
+
if prompt_wav_upload is not None:
|
79 |
+
prompt_wav = prompt_wav_upload
|
80 |
+
elif prompt_wav_record is not None:
|
81 |
+
prompt_wav = prompt_wav_record
|
82 |
+
else:
|
83 |
+
prompt_wav = None
|
84 |
+
# if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode
|
85 |
+
if mode_checkbox_group in ['自然语言控制']:
|
86 |
+
if instruct_text == '':
|
87 |
+
gr.Warning('您正在使用自然语言控制模式, 请输入instruct文本')
|
88 |
+
yield (target_sr, default_data)
|
89 |
+
if prompt_wav is None:
|
90 |
+
gr.Info('您正在使用自然语言控制模式, 请输入prompt音频')
|
91 |
+
# if cross_lingual mode, please make sure that model is iic/CosyVoice-300M and tts_text prompt_text are different language
|
92 |
+
if mode_checkbox_group in ['跨语种复刻']:
|
93 |
+
if cosyvoice.frontend.instruct is True:
|
94 |
+
gr.Warning('您正在使用跨语种复刻模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M模型'.format(args.model_dir))
|
95 |
+
yield (target_sr, default_data)
|
96 |
+
if instruct_text != '':
|
97 |
+
gr.Info('您正在使用跨语种复刻模式, instruct文本会被忽略')
|
98 |
+
if prompt_wav is None:
|
99 |
+
gr.Warning('您正在使用跨语种复刻模式, 请提供prompt音频')
|
100 |
+
yield (target_sr, default_data)
|
101 |
+
gr.Info('您正在使用跨语种复刻模式, 请确保合成文本和prompt文本为不同语言')
|
102 |
+
# if in zero_shot cross_lingual, please make sure that prompt_text and prompt_wav meets requirements
|
103 |
+
if mode_checkbox_group in ['3s极速复刻', '跨语种复刻']:
|
104 |
+
if prompt_wav is None:
|
105 |
+
gr.Warning('prompt音频为空,您是否忘记输入prompt音频?')
|
106 |
+
yield (target_sr, default_data)
|
107 |
+
if torchaudio.info(prompt_wav).sample_rate < prompt_sr:
|
108 |
+
gr.Warning('prompt音频采样率{}低于{}'.format(torchaudio.info(prompt_wav).sample_rate, prompt_sr))
|
109 |
+
yield (target_sr, default_data)
|
110 |
+
# sft mode only use sft_dropdown
|
111 |
+
if mode_checkbox_group in ['预训练音色']:
|
112 |
+
if instruct_text != '' or prompt_wav is not None or prompt_text != '':
|
113 |
+
gr.Info('您正在使用预训练音色模式,prompt文本/prompt音频/instruct文本会被忽略!')
|
114 |
+
# zero_shot mode only use prompt_wav prompt text
|
115 |
+
if mode_checkbox_group in ['3s极速复刻']:
|
116 |
+
if prompt_text == '':
|
117 |
+
gr.Warning('prompt文本为空,您是否忘记输入prompt文本?')
|
118 |
+
yield (target_sr, default_data)
|
119 |
+
if instruct_text != '':
|
120 |
+
gr.Info('您正在使用3s极速复刻模式,预训练音色/instruct文本会被忽略!')
|
121 |
+
info = torchaudio.info(prompt_wav)
|
122 |
+
if info.num_frames / info.sample_rate > 10:
|
123 |
+
gr.Warning('请限制输入音频在10s内,避免推理效果过低')
|
124 |
+
yield (target_sr, default_data)
|
125 |
+
|
126 |
+
if mode_checkbox_group == '预训练音色':
|
127 |
+
logging.info('get sft inference request')
|
128 |
+
set_all_random_seed(seed)
|
129 |
+
for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream, speed=speed):
|
130 |
+
yield (target_sr, i['tts_speech'].numpy().flatten())
|
131 |
+
elif mode_checkbox_group == '3s极速复刻':
|
132 |
+
logging.info('get zero_shot inference request')
|
133 |
+
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
134 |
+
set_all_random_seed(seed)
|
135 |
+
for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed):
|
136 |
+
yield (target_sr, i['tts_speech'].numpy().flatten())
|
137 |
+
elif mode_checkbox_group == '跨语种复刻':
|
138 |
+
logging.info('get cross_lingual inference request')
|
139 |
+
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
140 |
+
set_all_random_seed(seed)
|
141 |
+
for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream, speed=speed):
|
142 |
+
yield (target_sr, i['tts_speech'].numpy().flatten())
|
143 |
+
else:
|
144 |
+
logging.info('get instruct inference request')
|
145 |
+
logging.info('get instruct inference request')
|
146 |
+
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
147 |
+
set_all_random_seed(seed)
|
148 |
+
for i in cosyvoice.inference_instruct2(tts_text, instruct_text, prompt_speech_16k, stream=stream, speed=speed):
|
149 |
+
yield (target_sr, i['tts_speech'].numpy().flatten())
|
150 |
+
|
151 |
+
|
152 |
+
def main():
|
153 |
+
with gr.Blocks() as demo:
|
154 |
+
gr.Markdown("### 代码库 [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) \
|
155 |
+
预训练模型 [CosyVoice2-0.5B](https://www.modelscope.cn/models/iic/CosyVoice2-0.5B) \
|
156 |
+
[CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) \
|
157 |
+
[CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct) \
|
158 |
+
[CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)")
|
159 |
+
gr.Markdown("#### 请输入需要合成的文本,选择推理模式,并按照提示步骤进行操作")
|
160 |
+
|
161 |
+
tts_text = gr.Textbox(label="输入合成文本", lines=1, value="CosyVoice迎来全面升级,提供更准、更稳、更快、 更好的语音生成能力。CosyVoice is undergoing a comprehensive upgrade, providing more accurate, stable, faster, and better voice generation capabilities.")
|
162 |
+
with gr.Row():
|
163 |
+
mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='选择推理模式', value=inference_mode_list[0])
|
164 |
+
instruction_text = gr.Text(label="操作步骤", value=instruct_dict[inference_mode_list[0]], scale=0.5)
|
165 |
+
stream = gr.Radio(choices=stream_mode_list, label='是否流式推理', value=stream_mode_list[0][1])
|
166 |
+
with gr.Column(scale=0.25):
|
167 |
+
seed_button = gr.Button(value="\U0001F3B2")
|
168 |
+
seed = gr.Number(value=0, label="随机推理种子")
|
169 |
+
|
170 |
+
with gr.Row():
|
171 |
+
prompt_wav_upload = gr.Audio(sources='upload', type='filepath', label='选择prompt音频文件,注意采样率不低于16khz')
|
172 |
+
prompt_wav_record = gr.Audio(sources='microphone', type='filepath', label='录制prompt音频文件')
|
173 |
+
prompt_text = gr.Textbox(label="prompt文本", lines=1, placeholder="请输入prompt文本,支持自动识别,您可以自行修正识别结果...", value='')
|
174 |
+
instruct_text = gr.Textbox(label="输入instruct文本", lines=1, placeholder="请输入instruct文本.例如:用四川话说这句话。", value='')
|
175 |
+
|
176 |
+
generate_button = gr.Button("生成音频")
|
177 |
+
|
178 |
+
audio_output = gr.Audio(label="合成音频", autoplay=True, streaming=True)
|
179 |
+
|
180 |
+
seed_button.click(generate_seed, inputs=[], outputs=seed)
|
181 |
+
generate_button.click(generate_audio,
|
182 |
+
inputs=[tts_text, mode_checkbox_group, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
|
183 |
+
seed, stream],
|
184 |
+
outputs=[audio_output])
|
185 |
+
mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
|
186 |
+
prompt_wav_upload.change(fn=prompt_wav_recognition, inputs=[prompt_wav_upload], outputs=[prompt_text])
|
187 |
+
prompt_wav_record.change(fn=prompt_wav_recognition, inputs=[prompt_wav_record], outputs=[prompt_text])
|
188 |
+
demo.queue(max_size=2, default_concurrency_limit=4).launch(server_port=50000)
|
189 |
+
|
190 |
+
|
191 |
+
if __name__ == '__main__':
|
192 |
+
load_jit = True if os.environ.get('jit') == '1' else False
|
193 |
+
load_onnx = True if os.environ.get('onnx') == '1' else False
|
194 |
+
load_trt = True if os.environ.get('trt') == '1' else False
|
195 |
+
logging.info('cosyvoice args load_jit {} load_onnx {} load_trt {}'.format(load_jit, load_onnx, load_trt))
|
196 |
+
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=load_jit, load_onnx=load_onnx, load_trt=load_trt)
|
197 |
+
sft_spk = cosyvoice.list_avaliable_spks()
|
198 |
+
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
|
199 |
+
for stream in [True, False]:
|
200 |
+
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=stream)):
|
201 |
+
continue
|
202 |
+
prompt_sr, target_sr = 16000, 24000
|
203 |
+
default_data = np.zeros(target_sr)
|
204 |
+
|
205 |
+
model_dir = "iic/SenseVoiceSmall"
|
206 |
+
asr_model = AutoModel(
|
207 |
+
model=model_dir,
|
208 |
+
disable_update=True,
|
209 |
+
log_level='DEBUG',
|
210 |
+
device="cuda:0")
|
211 |
+
main()
|
cert.pem
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFkTCCA3mgAwIBAgIUEO2zq0OQeuRFIFH4lfHLgcR5hTUwDQYJKoZIhvcNAQEL
|
3 |
+
BQAwWDELMAkGA1UEBhMCQ04xCzAJBgNVBAgMAlpKMQswCQYDVQQHDAJIWjEQMA4G
|
4 |
+
A1UECgwHY29tcGFueTEMMAoGA1UECwwDYWxpMQ8wDQYDVQQDDAZncmFkaW8wHhcN
|
5 |
+
MjQwNDI5MTIxNDQxWhcNMjUwNDI5MTIxNDQxWjBYMQswCQYDVQQGEwJDTjELMAkG
|
6 |
+
A1UECAwCWkoxCzAJBgNVBAcMAkhaMRAwDgYDVQQKDAdjb21wYW55MQwwCgYDVQQL
|
7 |
+
DANhbGkxDzANBgNVBAMMBmdyYWRpbzCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCC
|
8 |
+
AgoCggIBAKohzP3V7VdDyMgfRO4+xzh/mWFPapQWJIIrhnHj8GRJ9tgFVXf71vcU
|
9 |
+
PMo+/t+y0rjupw3WwWIj6kJP15t46xxmLzoJHZKHV7d1Y7XJTyN1hvRCzeGz6w/E
|
10 |
+
VX0y6U+0y9m1HG0kvsfLwCKZPxEN21RfPukGN3qOIpjaRvE6fxg8DCUQN8qEpjQ9
|
11 |
+
DQehq/g0B/wZFwIB2089+BeqesjaOinY2+z4YiMreIj2dy8XM6G59quS21oe0u5n
|
12 |
+
6SW80ayf/yA6CHqblCHNfdi3vrzxMalNjT5EHKxQsLEDd2nWSndoPeXClXdSoIpE
|
13 |
+
1+H86dWHZpzPLd6rOfa+FCZ3TQsZbL+p3ree2AIMIB7zWw59oKGE8UuZbtyCVWK6
|
14 |
+
hufMOs703ZT97WeBEoOA72itUwCBqAakYNoULvYSOuXZT0LvJN1Z4YLNTkJXDA0u
|
15 |
+
vMABPbRFXfFK67F/fLm/vges4dhhpQNeSxSuXEC7rMA5hCQRk3BccdEgxoBfNZcM
|
16 |
+
HKo8CaB3wxbK7inXZb3JD4sFK64H5VjfJE8ibFzoIhiPICuC+0bzSKfc0+dcUNMb
|
17 |
+
KsE5M3etmS1TcPKuebk9OTu8YUJiNMYgEInw7vCq004v4IOqQr0aX/LGRm21RB/i
|
18 |
+
M3qFKCSHSw5/Z+o9sZ/kw3AeNnx5r5dq4OAswx3RhScPJtd6qesZAgMBAAGjUzBR
|
19 |
+
MB0GA1UdDgQWBBSNZx2v1BNAGL4gGM4TUXIvn1OyFTAfBgNVHSMEGDAWgBSNZx2v
|
20 |
+
1BNAGL4gGM4TUXIvn1OyFTAPBgNVHRMBAf8EBTADAQH/MA0GCSqGSIb3DQEBCwUA
|
21 |
+
A4ICAQA/khg91VtI/tDLCLyQ6ZMulfOzJHuGmIs4cvG5fIOvzYjQpvAGSgNeivKp
|
22 |
+
+5RIkpUabcwdUCq6VXeXheo+SaGgVdwpxQy/p/E+i+AengRB5Qm/hJ5lLU6CdNBq
|
23 |
+
WCN/0Aa1GL/pM4HAzVQY81HeB46UaHWtW6J9hnBbVg2MF2GanAqfeODpZqIHEggt
|
24 |
+
Vw2ivElV47JTFZsNU+JYG5ECsfTjNQYpoA6Hyb/d5ZW8YsfOjr8oIBM4QyZWq1Ke
|
25 |
+
eAlytVwl9lj4AkAQIAgkrJHkLjj5yjZ7Hir5NjBuBx06FDAIFb2XWgNnq4ua/pSq
|
26 |
+
9fL4cxx4cEJku1X/FYtUBbWsXe8uFGwTEGHuEZR3pj5VSFbuNlARLIsq8/gh8MRQ
|
27 |
+
NjKQIlTVINkuOFuVmSrLC5nIwTPhlpEFwIQPGzFD2DbVNor9EXQ2b89WtHqZAZik
|
28 |
+
qFDb76JM9jctf9n8l96oSKrwEaCoFmRojnyyYl9UByJxPRCeTJ//i2vxeTvLC3FT
|
29 |
+
Rw2jFi/pwoqSVmJtuAFLT96/x2qKpgk+M1zG3oFiDV1lxY8sw1RA3Mm4s3Cm8H5A
|
30 |
+
3E+6R34XZLifqhxLVcyDsRWPcqte3Pt6v/xXWN+EuOigK4tr69p8aU7WR5mskmzO
|
31 |
+
tZFeEb0OxL1WjF/rmwCkd/SvSuWSiszMoX5hcOA7/GGw3pl3YQ==
|
32 |
+
-----END CERTIFICATE-----
|
cosyvoice/__init__.py
ADDED
File without changes
|
cosyvoice/bin/average_model.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc (Di Wu)
|
2 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
import argparse
|
18 |
+
import glob
|
19 |
+
|
20 |
+
import yaml
|
21 |
+
import torch
|
22 |
+
|
23 |
+
|
24 |
+
def get_args():
|
25 |
+
parser = argparse.ArgumentParser(description='average model')
|
26 |
+
parser.add_argument('--dst_model', required=True, help='averaged model')
|
27 |
+
parser.add_argument('--src_path',
|
28 |
+
required=True,
|
29 |
+
help='src model path for average')
|
30 |
+
parser.add_argument('--val_best',
|
31 |
+
action="store_true",
|
32 |
+
help='averaged model')
|
33 |
+
parser.add_argument('--num',
|
34 |
+
default=5,
|
35 |
+
type=int,
|
36 |
+
help='nums for averaged model')
|
37 |
+
|
38 |
+
args = parser.parse_args()
|
39 |
+
print(args)
|
40 |
+
return args
|
41 |
+
|
42 |
+
|
43 |
+
def main():
|
44 |
+
args = get_args()
|
45 |
+
val_scores = []
|
46 |
+
if args.val_best:
|
47 |
+
yamls = glob.glob('{}/*.yaml'.format(args.src_path))
|
48 |
+
yamls = [
|
49 |
+
f for f in yamls
|
50 |
+
if not (os.path.basename(f).startswith('train')
|
51 |
+
or os.path.basename(f).startswith('init'))
|
52 |
+
]
|
53 |
+
for y in yamls:
|
54 |
+
with open(y, 'r') as f:
|
55 |
+
dic_yaml = yaml.load(f, Loader=yaml.BaseLoader)
|
56 |
+
loss = float(dic_yaml['loss_dict']['loss'])
|
57 |
+
epoch = int(dic_yaml['epoch'])
|
58 |
+
step = int(dic_yaml['step'])
|
59 |
+
tag = dic_yaml['tag']
|
60 |
+
val_scores += [[epoch, step, loss, tag]]
|
61 |
+
sorted_val_scores = sorted(val_scores,
|
62 |
+
key=lambda x: x[2],
|
63 |
+
reverse=False)
|
64 |
+
print("best val (epoch, step, loss, tag) = " +
|
65 |
+
str(sorted_val_scores[:args.num]))
|
66 |
+
path_list = [
|
67 |
+
args.src_path + '/epoch_{}_whole.pt'.format(score[0])
|
68 |
+
for score in sorted_val_scores[:args.num]
|
69 |
+
]
|
70 |
+
print(path_list)
|
71 |
+
avg = {}
|
72 |
+
num = args.num
|
73 |
+
assert num == len(path_list)
|
74 |
+
for path in path_list:
|
75 |
+
print('Processing {}'.format(path))
|
76 |
+
states = torch.load(path, map_location=torch.device('cpu'))
|
77 |
+
for k in states.keys():
|
78 |
+
if k not in avg.keys():
|
79 |
+
avg[k] = states[k].clone()
|
80 |
+
else:
|
81 |
+
avg[k] += states[k]
|
82 |
+
# average
|
83 |
+
for k in avg.keys():
|
84 |
+
if avg[k] is not None:
|
85 |
+
# pytorch 1.6 use true_divide instead of /=
|
86 |
+
avg[k] = torch.true_divide(avg[k], num)
|
87 |
+
print('Saving to {}'.format(args.dst_model))
|
88 |
+
torch.save(avg, args.dst_model)
|
89 |
+
|
90 |
+
|
91 |
+
if __name__ == '__main__':
|
92 |
+
main()
|
cosyvoice/bin/convert.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import torch
|
3 |
+
|
4 |
+
def convert_llm(state_dict):
|
5 |
+
# 调整了lm的结构,把codec_lm.encoder作为llm,codec_lm.decoder作为decoder
|
6 |
+
keys = list(state_dict.keys())
|
7 |
+
for k in keys:
|
8 |
+
if k.startswith('codec_lm.encoder.'):
|
9 |
+
v = state_dict.pop(k)
|
10 |
+
k = k.replace('codec_lm.encoder.', 'llm.')
|
11 |
+
state_dict[k] = v
|
12 |
+
if k.startswith('codec_lm.decoder.'):
|
13 |
+
v = state_dict.pop(k)
|
14 |
+
k = k.replace('codec_lm.decoder.', 'llm_decoder.')
|
15 |
+
state_dict[k] = v
|
16 |
+
# espnet和wenet具体实现上的差异
|
17 |
+
keys = list(state_dict.keys())
|
18 |
+
for k in keys:
|
19 |
+
if k.startswith('text_encoder.embed.'):
|
20 |
+
v = state_dict.pop(k)
|
21 |
+
k = k.replace('text_encoder.embed.', 'text_encoder.embed.out.')
|
22 |
+
state_dict[k] = v
|
23 |
+
if k.startswith('llm.embed.'):
|
24 |
+
v = state_dict.pop(k)
|
25 |
+
k = k.replace('llm.embed.', 'llm.embed.out.')
|
26 |
+
state_dict[k] = v
|
27 |
+
keys = list(state_dict.keys())
|
28 |
+
for k in keys:
|
29 |
+
if k.startswith('text_enc_out_layer.'):
|
30 |
+
v = state_dict.pop(k)
|
31 |
+
k = k.replace('text_enc_out_layer.', 'text_encoder_affine_layer.')
|
32 |
+
state_dict[k] = v
|
33 |
+
if k.startswith('token_embedding.'):
|
34 |
+
v = state_dict.pop(k)
|
35 |
+
k = k.replace('token_embedding.', 'text_embedding.')
|
36 |
+
state_dict[k] = v
|
37 |
+
if k.startswith('xvec_proj.'):
|
38 |
+
v = state_dict.pop(k)
|
39 |
+
k = k.replace('xvec_proj.', 'spk_embed_affine_layer.')
|
40 |
+
state_dict[k] = v
|
41 |
+
if k.startswith('lm_embedding.'):
|
42 |
+
v = state_dict.pop(k)
|
43 |
+
k = k.replace('lm_embedding.', 'llm_embedding.')
|
44 |
+
state_dict[k] = v
|
45 |
+
if k.startswith('codec_embedder.'):
|
46 |
+
v = state_dict.pop(k)
|
47 |
+
k = k.replace('codec_embedder.', 'speech_embedding.')
|
48 |
+
state_dict[k] = v
|
49 |
+
# instruct少了spk embedding参数,加个全0上去
|
50 |
+
keys = list(state_dict.keys())
|
51 |
+
if 'spk_embed_affine_layer.weight' not in keys:
|
52 |
+
print('no spk_embed_affine_layer.weight, should be instruct model')
|
53 |
+
state_dict['spk_embed_affine_layer.weight'] = torch.zeros(1024, 192)
|
54 |
+
if 'spk_embed_affine_layer.bias' not in keys:
|
55 |
+
print('no spk_embed_affine_layer.bias, should be instruct model')
|
56 |
+
state_dict['spk_embed_affine_layer.bias'] = torch.zeros(1024)
|
57 |
+
return state_dict
|
58 |
+
|
59 |
+
def convert_hift(state_dict):
|
60 |
+
# 调整了cosyvoice中hifigan的结构,把f0_predictor放到generator里
|
61 |
+
keys = list(state_dict.keys())
|
62 |
+
for k in keys:
|
63 |
+
if k.startswith('decoder.'):
|
64 |
+
v = state_dict.pop(k)
|
65 |
+
k = k.replace('decoder.', '')
|
66 |
+
state_dict[k] = v
|
67 |
+
if k.startswith('generator.'):
|
68 |
+
v = state_dict.pop(k)
|
69 |
+
k = k.replace('generator.', '')
|
70 |
+
state_dict[k] = v
|
71 |
+
return state_dict
|
72 |
+
|
73 |
+
def convert_flow(state_dict):
|
74 |
+
keys = list(state_dict.keys())
|
75 |
+
for k in keys:
|
76 |
+
if k.startswith('encoder.embed.'):
|
77 |
+
v = state_dict.pop(k)
|
78 |
+
k = k.replace('encoder.embed.', 'encoder.embed.out.')
|
79 |
+
state_dict[k] = v
|
80 |
+
for k in keys:
|
81 |
+
if k.startswith('xvec_proj.'):
|
82 |
+
v = state_dict.pop(k)
|
83 |
+
k = k.replace('xvec_proj.', 'spk_embed_affine_layer.')
|
84 |
+
state_dict[k] = v
|
85 |
+
return state_dict
|
86 |
+
|
87 |
+
def convert_llm2(state_dict):
|
88 |
+
# 调整了lm的结构,把codec_lm.encoder作为llm,codec_lm.decoder作为decoder
|
89 |
+
keys = list(state_dict.keys())
|
90 |
+
for k in keys:
|
91 |
+
if k.startswith('codec_lm.encoder.'):
|
92 |
+
v = state_dict.pop(k)
|
93 |
+
k = k.replace('codec_lm.encoder.', 'llm.')
|
94 |
+
state_dict[k] = v
|
95 |
+
if k.startswith('codec_lm.decoder.'):
|
96 |
+
v = state_dict.pop(k)
|
97 |
+
k = k.replace('codec_lm.decoder.', 'llm_decoder.')
|
98 |
+
state_dict[k] = v
|
99 |
+
if k.startswith('lm_embedding.'):
|
100 |
+
v = state_dict.pop(k)
|
101 |
+
k = k.replace('lm_embedding.', 'llm_embedding.')
|
102 |
+
state_dict[k] = v
|
103 |
+
if k.startswith('codec_embedder.'):
|
104 |
+
v = state_dict.pop(k)
|
105 |
+
k = k.replace('codec_embedder.', 'speech_embedding.')
|
106 |
+
state_dict[k] = v
|
107 |
+
if k.startswith('text_enc_out_layer.'):
|
108 |
+
state_dict.pop(k)
|
109 |
+
if k.startswith('token_embedding.weight'):
|
110 |
+
state_dict.pop(k)
|
111 |
+
return state_dict
|
112 |
+
|
113 |
+
def convert_flow2(state_dict):
|
114 |
+
keys = list(state_dict.keys())
|
115 |
+
for k in keys:
|
116 |
+
if k.startswith('encoder.embed.'):
|
117 |
+
v = state_dict.pop(k)
|
118 |
+
k = k.replace('encoder.embed.', 'encoder.embed.out.')
|
119 |
+
state_dict[k] = v
|
120 |
+
for k in keys:
|
121 |
+
if k.startswith('xvec_proj.'):
|
122 |
+
v = state_dict.pop(k)
|
123 |
+
k = k.replace('xvec_proj.', 'spk_embed_affine_layer.')
|
124 |
+
state_dict[k] = v
|
125 |
+
for k in keys:
|
126 |
+
if k.startswith('mel_extractor.'):
|
127 |
+
state_dict.pop(k)
|
128 |
+
for k in keys:
|
129 |
+
if k.startswith('encoder.upsample_blocks.0.0.'):
|
130 |
+
v = state_dict.pop(k)
|
131 |
+
k = k.replace('encoder.upsample_blocks.0.0.', 'encoder.up_layer.')
|
132 |
+
state_dict[k] = v
|
133 |
+
if k.startswith('encoder.upsample_blocks.0.1.'):
|
134 |
+
v = state_dict.pop(k)
|
135 |
+
k = k.replace('encoder.upsample_blocks.0.1.', 'encoder.up_embed.out.')
|
136 |
+
state_dict[k] = v
|
137 |
+
if k.startswith('encoder.upsample_blocks.0.2.'):
|
138 |
+
v = state_dict.pop(k)
|
139 |
+
k = k.replace('encoder.upsample_blocks.0.2.', 'encoder.up_encoders.')
|
140 |
+
state_dict[k] = v
|
141 |
+
# CausalBlock1D中sequantial 1->2
|
142 |
+
if k.startswith('decoder.estimator.') and k.endswith('block.1.weight'):
|
143 |
+
v = state_dict.pop(k)
|
144 |
+
k = k.replace('block.1.weight', 'block.2.weight')
|
145 |
+
state_dict[k] = v
|
146 |
+
if k.startswith('decoder.estimator.') and k.endswith('block.1.bias'):
|
147 |
+
v = state_dict.pop(k)
|
148 |
+
k = k.replace('block.1.bias', 'block.2.bias')
|
149 |
+
state_dict[k] = v
|
150 |
+
return state_dict
|
151 |
+
|
152 |
+
if __name__ == '__main__':
|
153 |
+
# 使用方法 python3 convert.py 原格式llm.pt llm normalize 新格式llm.pt
|
154 |
+
# 或者 python3 convert.py 新格式llm.pt llm inverse_normalize 原格式llm.pt
|
155 |
+
state_dict = torch.load(sys.argv[1], map_location='cpu')
|
156 |
+
if sys.argv[2] == 'llm':
|
157 |
+
state_dict = convert_llm(state_dict)
|
158 |
+
elif sys.argv[2] == 'flow':
|
159 |
+
state_dict = convert_flow(state_dict)
|
160 |
+
elif sys.argv[2] == 'hift':
|
161 |
+
state_dict = convert_hift(state_dict)
|
162 |
+
elif sys.argv[2] == 'llm2':
|
163 |
+
state_dict = convert_llm2(state_dict)
|
164 |
+
elif sys.argv[2] == 'flow2':
|
165 |
+
state_dict = convert_flow2(state_dict)
|
166 |
+
else:
|
167 |
+
raise ValueError
|
168 |
+
torch.save(state_dict, sys.argv[4])
|
cosyvoice/bin/export_jit.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
import os
|
21 |
+
import sys
|
22 |
+
import torch
|
23 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
24 |
+
sys.path.append('{}/../..'.format(ROOT_DIR))
|
25 |
+
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
26 |
+
from cosyvoice.cli.cosyvoice import CosyVoice
|
27 |
+
|
28 |
+
|
29 |
+
def get_args():
|
30 |
+
parser = argparse.ArgumentParser(description='export your model for deployment')
|
31 |
+
parser.add_argument('--model_dir',
|
32 |
+
type=str,
|
33 |
+
default='pretrained_models/CosyVoice-300M',
|
34 |
+
help='local path')
|
35 |
+
args = parser.parse_args()
|
36 |
+
print(args)
|
37 |
+
return args
|
38 |
+
|
39 |
+
|
40 |
+
def main():
|
41 |
+
args = get_args()
|
42 |
+
logging.basicConfig(level=logging.DEBUG,
|
43 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
44 |
+
|
45 |
+
torch._C._jit_set_fusion_strategy([('STATIC', 1)])
|
46 |
+
torch._C._jit_set_profiling_mode(False)
|
47 |
+
torch._C._jit_set_profiling_executor(False)
|
48 |
+
|
49 |
+
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_onnx=False)
|
50 |
+
|
51 |
+
# 1. export llm text_encoder
|
52 |
+
llm_text_encoder = cosyvoice.model.llm.text_encoder.half()
|
53 |
+
script = torch.jit.script(llm_text_encoder)
|
54 |
+
script = torch.jit.freeze(script)
|
55 |
+
script = torch.jit.optimize_for_inference(script)
|
56 |
+
script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
|
57 |
+
|
58 |
+
# 2. export llm llm
|
59 |
+
llm_llm = cosyvoice.model.llm.llm.half()
|
60 |
+
script = torch.jit.script(llm_llm)
|
61 |
+
script = torch.jit.freeze(script, preserved_attrs=['forward_chunk'])
|
62 |
+
script = torch.jit.optimize_for_inference(script)
|
63 |
+
script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
|
64 |
+
|
65 |
+
# 3. export flow encoder
|
66 |
+
flow_encoder = cosyvoice.model.flow.encoder
|
67 |
+
script = torch.jit.script(flow_encoder)
|
68 |
+
script = torch.jit.freeze(script)
|
69 |
+
script = torch.jit.optimize_for_inference(script)
|
70 |
+
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
71 |
+
|
72 |
+
|
73 |
+
if __name__ == '__main__':
|
74 |
+
main()
|
cosyvoice/bin/export_jit_cosyvoice2.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
import os
|
21 |
+
import sys
|
22 |
+
import torch
|
23 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
24 |
+
sys.path.append('{}/../..'.format(ROOT_DIR))
|
25 |
+
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
26 |
+
from cosyvoice.cli.cosyvoice import CosyVoice2
|
27 |
+
|
28 |
+
|
29 |
+
def get_args():
|
30 |
+
parser = argparse.ArgumentParser(description='export your model for deployment')
|
31 |
+
parser.add_argument('--model_dir',
|
32 |
+
type=str,
|
33 |
+
default='pretrained_models/CosyVoice-300M',
|
34 |
+
help='local path')
|
35 |
+
args = parser.parse_args()
|
36 |
+
print(args)
|
37 |
+
return args
|
38 |
+
|
39 |
+
|
40 |
+
def main():
|
41 |
+
args = get_args()
|
42 |
+
logging.basicConfig(level=logging.DEBUG,
|
43 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
44 |
+
|
45 |
+
torch._C._jit_set_fusion_strategy([('STATIC', 1)])
|
46 |
+
torch._C._jit_set_profiling_mode(False)
|
47 |
+
torch._C._jit_set_profiling_executor(False)
|
48 |
+
|
49 |
+
cosyvoice = CosyVoice2(args.model_dir, load_jit=False, load_onnx=False)
|
50 |
+
|
51 |
+
# 3. export flow encoder
|
52 |
+
flow_encoder = cosyvoice.model.flow.encoder
|
53 |
+
script = torch.jit.script(flow_encoder)
|
54 |
+
script = torch.jit.freeze(script)
|
55 |
+
script = torch.jit.optimize_for_inference(script)
|
56 |
+
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
57 |
+
|
58 |
+
|
59 |
+
if __name__ == '__main__':
|
60 |
+
main()
|
cosyvoice/bin/export_onnx.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, [email protected])
|
2 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from __future__ import print_function
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import logging
|
20 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
21 |
+
import os
|
22 |
+
import sys
|
23 |
+
import onnxruntime
|
24 |
+
import random
|
25 |
+
import torch
|
26 |
+
from tqdm import tqdm
|
27 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
28 |
+
sys.path.append('{}/../..'.format(ROOT_DIR))
|
29 |
+
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
30 |
+
from cosyvoice.cli.cosyvoice import CosyVoice
|
31 |
+
|
32 |
+
|
33 |
+
def get_dummy_input(batch_size, seq_len, out_channels, device):
|
34 |
+
x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
35 |
+
mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device)
|
36 |
+
mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
37 |
+
t = torch.rand((batch_size), dtype=torch.float32, device=device)
|
38 |
+
spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device)
|
39 |
+
cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
40 |
+
return x, mask, mu, t, spks, cond
|
41 |
+
|
42 |
+
|
43 |
+
def get_args():
|
44 |
+
parser = argparse.ArgumentParser(description='export your model for deployment')
|
45 |
+
parser.add_argument('--model_dir',
|
46 |
+
type=str,
|
47 |
+
default='pretrained_models/CosyVoice-300M',
|
48 |
+
help='local path')
|
49 |
+
args = parser.parse_args()
|
50 |
+
print(args)
|
51 |
+
return args
|
52 |
+
|
53 |
+
|
54 |
+
def main():
|
55 |
+
args = get_args()
|
56 |
+
logging.basicConfig(level=logging.DEBUG,
|
57 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
58 |
+
|
59 |
+
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_onnx=False)
|
60 |
+
|
61 |
+
# 1. export flow decoder estimator
|
62 |
+
estimator = cosyvoice.model.flow.decoder.estimator
|
63 |
+
|
64 |
+
device = cosyvoice.model.device
|
65 |
+
batch_size, seq_len = 1, 256
|
66 |
+
out_channels = cosyvoice.model.flow.decoder.estimator.out_channels
|
67 |
+
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
68 |
+
torch.onnx.export(
|
69 |
+
estimator,
|
70 |
+
(x, mask, mu, t, spks, cond),
|
71 |
+
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
72 |
+
export_params=True,
|
73 |
+
opset_version=18,
|
74 |
+
do_constant_folding=True,
|
75 |
+
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
76 |
+
output_names=['estimator_out'],
|
77 |
+
dynamic_axes={
|
78 |
+
'x': {0: 'batch_size', 2: 'seq_len'},
|
79 |
+
'mask': {0: 'batch_size', 2: 'seq_len'},
|
80 |
+
'mu': {0: 'batch_size', 2: 'seq_len'},
|
81 |
+
'cond': {0: 'batch_size', 2: 'seq_len'},
|
82 |
+
't': {0: 'batch_size'},
|
83 |
+
'spks': {0: 'batch_size'},
|
84 |
+
'estimator_out': {0: 'batch_size', 2: 'seq_len'},
|
85 |
+
}
|
86 |
+
)
|
87 |
+
|
88 |
+
# 2. test computation consistency
|
89 |
+
option = onnxruntime.SessionOptions()
|
90 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
91 |
+
option.intra_op_num_threads = 1
|
92 |
+
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
93 |
+
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
94 |
+
sess_options=option, providers=providers)
|
95 |
+
|
96 |
+
for _ in tqdm(range(10)):
|
97 |
+
x, mask, mu, t, spks, cond = get_dummy_input(random.randint(1, 6), random.randint(16, 512), out_channels, device)
|
98 |
+
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
99 |
+
ort_inputs = {
|
100 |
+
'x': x.cpu().numpy(),
|
101 |
+
'mask': mask.cpu().numpy(),
|
102 |
+
'mu': mu.cpu().numpy(),
|
103 |
+
't': t.cpu().numpy(),
|
104 |
+
'spks': spks.cpu().numpy(),
|
105 |
+
'cond': cond.cpu().numpy()
|
106 |
+
}
|
107 |
+
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
108 |
+
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
109 |
+
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
main()
|
cosyvoice/bin/export_onnx_cosyvoice2.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, [email protected])
|
2 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from __future__ import print_function
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import logging
|
20 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
21 |
+
import os
|
22 |
+
import sys
|
23 |
+
import onnxruntime
|
24 |
+
import random
|
25 |
+
import torch
|
26 |
+
from tqdm import tqdm
|
27 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
28 |
+
sys.path.append('{}/../..'.format(ROOT_DIR))
|
29 |
+
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
30 |
+
from cosyvoice.cli.cosyvoice import CosyVoice2
|
31 |
+
|
32 |
+
|
33 |
+
def get_dummy_input(batch_size, seq_len, out_channels, device):
|
34 |
+
x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
35 |
+
mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device)
|
36 |
+
mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
37 |
+
t = torch.rand((batch_size), dtype=torch.float32, device=device)
|
38 |
+
spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device)
|
39 |
+
cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
40 |
+
return x, mask, mu, t, spks, cond
|
41 |
+
|
42 |
+
|
43 |
+
def get_args():
|
44 |
+
parser = argparse.ArgumentParser(description='export your model for deployment')
|
45 |
+
parser.add_argument('--model_dir',
|
46 |
+
type=str,
|
47 |
+
default='pretrained_models/CosyVoice-300M',
|
48 |
+
help='local path')
|
49 |
+
args = parser.parse_args()
|
50 |
+
print(args)
|
51 |
+
return args
|
52 |
+
|
53 |
+
|
54 |
+
def main():
|
55 |
+
args = get_args()
|
56 |
+
logging.basicConfig(level=logging.DEBUG,
|
57 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
58 |
+
|
59 |
+
cosyvoice = CosyVoice2(args.model_dir, load_jit=False, load_onnx=False)
|
60 |
+
|
61 |
+
# 1. export flow decoder estimator
|
62 |
+
estimator = cosyvoice.model.flow.decoder.estimator
|
63 |
+
|
64 |
+
device = cosyvoice.model.device
|
65 |
+
batch_size, seq_len = 2, 320
|
66 |
+
out_channels = cosyvoice.model.flow.decoder.estimator.out_channels
|
67 |
+
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
68 |
+
torch.onnx.export(
|
69 |
+
estimator,
|
70 |
+
(x, mask, mu, t, spks, cond),
|
71 |
+
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
72 |
+
export_params=True,
|
73 |
+
opset_version=18,
|
74 |
+
do_constant_folding=True,
|
75 |
+
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
76 |
+
output_names=['estimator_out'],
|
77 |
+
dynamic_axes={
|
78 |
+
'x': {2: 'seq_len'},
|
79 |
+
'mask': {2: 'seq_len'},
|
80 |
+
'mu': {2: 'seq_len'},
|
81 |
+
'cond': {2: 'seq_len'},
|
82 |
+
'estimator_out': {2: 'seq_len'},
|
83 |
+
}
|
84 |
+
)
|
85 |
+
|
86 |
+
# 2. test computation consistency
|
87 |
+
option = onnxruntime.SessionOptions()
|
88 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
89 |
+
option.intra_op_num_threads = 1
|
90 |
+
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
91 |
+
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
92 |
+
sess_options=option, providers=providers)
|
93 |
+
|
94 |
+
for _ in tqdm(range(10)):
|
95 |
+
x, mask, mu, t, spks, cond = get_dummy_input(random.randint(1, 6), random.randint(16, 512), out_channels, device)
|
96 |
+
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
97 |
+
ort_inputs = {
|
98 |
+
'x': x.cpu().numpy(),
|
99 |
+
'mask': mask.cpu().numpy(),
|
100 |
+
'mu': mu.cpu().numpy(),
|
101 |
+
't': t.cpu().numpy(),
|
102 |
+
'spks': spks.cpu().numpy(),
|
103 |
+
'cond': cond.cpu().numpy()
|
104 |
+
}
|
105 |
+
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
106 |
+
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
107 |
+
|
108 |
+
|
109 |
+
if __name__ == "__main__":
|
110 |
+
main()
|
cosyvoice/bin/export_trt_cosyvoce2.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/mnt/lyuxiang.lx/data/TensorRT-10.0.1.6-cu124/TensorRT-10.0.1.6/lib:/usr/local/cuda-12.4/lib64
|
3 |
+
/mnt/lyuxiang.lx/data/TensorRT-10.0.1.6-cu124/TensorRT-10.0.1.6/bin/trtexec --onnx=/mnt/lyuxiang.lx/CosyVoice_github/pretrained_models/CosyVoice2-0.5B/flow.decoder.estimator.fp32.onnx --saveEngine=/mnt/lyuxiang.lx/CosyVoice_github/pretrained_models/CosyVoice2-0.5B/flow.decoder.estimator.fp16.Volta.plan --fp16 --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw --outputIOFormats=fp16:chw
|
cosyvoice/bin/inference.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
import os
|
21 |
+
import torch
|
22 |
+
from torch.utils.data import DataLoader
|
23 |
+
import torchaudio
|
24 |
+
from hyperpyyaml import load_hyperpyyaml
|
25 |
+
from tqdm import tqdm
|
26 |
+
from cosyvoice.cli.model import CosyVoiceModel
|
27 |
+
from cosyvoice.dataset.dataset import Dataset
|
28 |
+
|
29 |
+
|
30 |
+
def get_args():
|
31 |
+
parser = argparse.ArgumentParser(description='inference with your model')
|
32 |
+
parser.add_argument('--config', required=True, help='config file')
|
33 |
+
parser.add_argument('--prompt_data', required=True, help='prompt data file')
|
34 |
+
parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
|
35 |
+
parser.add_argument('--tts_text', required=True, help='tts input file')
|
36 |
+
parser.add_argument('--llm_model', required=True, help='llm model file')
|
37 |
+
parser.add_argument('--flow_model', required=True, help='flow model file')
|
38 |
+
parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
|
39 |
+
parser.add_argument('--gpu',
|
40 |
+
type=int,
|
41 |
+
default=-1,
|
42 |
+
help='gpu id for this rank, -1 for cpu')
|
43 |
+
parser.add_argument('--mode',
|
44 |
+
default='sft',
|
45 |
+
choices=['sft', 'zero_shot'],
|
46 |
+
help='inference mode')
|
47 |
+
parser.add_argument('--result_dir', required=True, help='asr result file')
|
48 |
+
args = parser.parse_args()
|
49 |
+
print(args)
|
50 |
+
return args
|
51 |
+
|
52 |
+
|
53 |
+
def main():
|
54 |
+
args = get_args()
|
55 |
+
logging.basicConfig(level=logging.DEBUG,
|
56 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
57 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
|
58 |
+
|
59 |
+
# Init cosyvoice models from configs
|
60 |
+
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
61 |
+
device = torch.device('cuda' if use_cuda else 'cpu')
|
62 |
+
with open(args.config, 'r') as f:
|
63 |
+
configs = load_hyperpyyaml(f)
|
64 |
+
|
65 |
+
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
66 |
+
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
67 |
+
|
68 |
+
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
|
69 |
+
tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
70 |
+
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
71 |
+
|
72 |
+
del configs
|
73 |
+
os.makedirs(args.result_dir, exist_ok=True)
|
74 |
+
fn = os.path.join(args.result_dir, 'wav.scp')
|
75 |
+
f = open(fn, 'w')
|
76 |
+
with torch.no_grad():
|
77 |
+
for _, batch in tqdm(enumerate(test_data_loader)):
|
78 |
+
utts = batch["utts"]
|
79 |
+
assert len(utts) == 1, "inference mode only support batchsize 1"
|
80 |
+
text_token = batch["text_token"].to(device)
|
81 |
+
text_token_len = batch["text_token_len"].to(device)
|
82 |
+
tts_index = batch["tts_index"]
|
83 |
+
tts_text_token = batch["tts_text_token"].to(device)
|
84 |
+
tts_text_token_len = batch["tts_text_token_len"].to(device)
|
85 |
+
speech_token = batch["speech_token"].to(device)
|
86 |
+
speech_token_len = batch["speech_token_len"].to(device)
|
87 |
+
speech_feat = batch["speech_feat"].to(device)
|
88 |
+
speech_feat_len = batch["speech_feat_len"].to(device)
|
89 |
+
utt_embedding = batch["utt_embedding"].to(device)
|
90 |
+
spk_embedding = batch["spk_embedding"].to(device)
|
91 |
+
if args.mode == 'sft':
|
92 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
93 |
+
'llm_embedding': spk_embedding, 'flow_embedding': spk_embedding}
|
94 |
+
else:
|
95 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
96 |
+
'prompt_text': text_token, 'prompt_text_len': text_token_len,
|
97 |
+
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
98 |
+
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
99 |
+
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
100 |
+
'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
|
101 |
+
tts_speeches = []
|
102 |
+
for model_output in model.tts(**model_input):
|
103 |
+
tts_speeches.append(model_output['tts_speech'])
|
104 |
+
tts_speeches = torch.concat(tts_speeches, dim=1)
|
105 |
+
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
106 |
+
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
107 |
+
torchaudio.save(tts_fn, tts_speeches, sample_rate=22050)
|
108 |
+
f.write('{} {}\n'.format(tts_key, tts_fn))
|
109 |
+
f.flush()
|
110 |
+
f.close()
|
111 |
+
logging.info('Result wav.scp saved in {}'.format(fn))
|
112 |
+
|
113 |
+
|
114 |
+
if __name__ == '__main__':
|
115 |
+
main()
|
cosyvoice/bin/train.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
import argparse
|
17 |
+
import datetime
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
from copy import deepcopy
|
21 |
+
import os
|
22 |
+
import torch
|
23 |
+
import torch.distributed as dist
|
24 |
+
import deepspeed
|
25 |
+
|
26 |
+
from hyperpyyaml import load_hyperpyyaml
|
27 |
+
|
28 |
+
from torch.distributed.elastic.multiprocessing.errors import record
|
29 |
+
|
30 |
+
from cosyvoice.utils.executor import Executor
|
31 |
+
from cosyvoice.utils.train_utils import (
|
32 |
+
init_distributed,
|
33 |
+
init_dataset_and_dataloader,
|
34 |
+
init_optimizer_and_scheduler,
|
35 |
+
init_summarywriter, save_model,
|
36 |
+
wrap_cuda_model, check_modify_and_save_config)
|
37 |
+
|
38 |
+
|
39 |
+
def get_args():
|
40 |
+
parser = argparse.ArgumentParser(description='training your network')
|
41 |
+
parser.add_argument('--train_engine',
|
42 |
+
default='torch_ddp',
|
43 |
+
choices=['torch_ddp', 'deepspeed'],
|
44 |
+
help='Engine for paralleled training')
|
45 |
+
parser.add_argument('--model', required=True, help='model which will be trained')
|
46 |
+
parser.add_argument('--config', required=True, help='config file')
|
47 |
+
parser.add_argument('--train_data', required=True, help='train data file')
|
48 |
+
parser.add_argument('--cv_data', required=True, help='cv data file')
|
49 |
+
parser.add_argument('--checkpoint', help='checkpoint model')
|
50 |
+
parser.add_argument('--model_dir', required=True, help='save model dir')
|
51 |
+
parser.add_argument('--tensorboard_dir',
|
52 |
+
default='tensorboard',
|
53 |
+
help='tensorboard log dir')
|
54 |
+
parser.add_argument('--ddp.dist_backend',
|
55 |
+
dest='dist_backend',
|
56 |
+
default='nccl',
|
57 |
+
choices=['nccl', 'gloo'],
|
58 |
+
help='distributed backend')
|
59 |
+
parser.add_argument('--num_workers',
|
60 |
+
default=0,
|
61 |
+
type=int,
|
62 |
+
help='num of subprocess workers for reading')
|
63 |
+
parser.add_argument('--prefetch',
|
64 |
+
default=100,
|
65 |
+
type=int,
|
66 |
+
help='prefetch number')
|
67 |
+
parser.add_argument('--pin_memory',
|
68 |
+
action='store_true',
|
69 |
+
default=False,
|
70 |
+
help='Use pinned memory buffers used for reading')
|
71 |
+
parser.add_argument('--use_amp',
|
72 |
+
action='store_true',
|
73 |
+
default=False,
|
74 |
+
help='Use automatic mixed precision training')
|
75 |
+
parser.add_argument('--deepspeed.save_states',
|
76 |
+
dest='save_states',
|
77 |
+
default='model_only',
|
78 |
+
choices=['model_only', 'model+optimizer'],
|
79 |
+
help='save model/optimizer states')
|
80 |
+
parser.add_argument('--timeout',
|
81 |
+
default=60,
|
82 |
+
type=int,
|
83 |
+
help='timeout (in seconds) of cosyvoice_join.')
|
84 |
+
parser = deepspeed.add_config_arguments(parser)
|
85 |
+
args = parser.parse_args()
|
86 |
+
return args
|
87 |
+
|
88 |
+
|
89 |
+
@record
|
90 |
+
def main():
|
91 |
+
args = get_args()
|
92 |
+
logging.basicConfig(level=logging.DEBUG,
|
93 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
94 |
+
# gan train has some special initialization logic
|
95 |
+
gan = True if args.model == 'hifigan' else False
|
96 |
+
|
97 |
+
override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
|
98 |
+
if gan is True:
|
99 |
+
override_dict.pop('hift')
|
100 |
+
with open(args.config, 'r') as f:
|
101 |
+
configs = load_hyperpyyaml(f, overrides=override_dict)
|
102 |
+
if gan is True:
|
103 |
+
configs['train_conf'] = configs['train_conf_gan']
|
104 |
+
configs['train_conf'].update(vars(args))
|
105 |
+
|
106 |
+
# Init env for ddp
|
107 |
+
init_distributed(args)
|
108 |
+
|
109 |
+
# Get dataset & dataloader
|
110 |
+
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
|
111 |
+
init_dataset_and_dataloader(args, configs, gan)
|
112 |
+
|
113 |
+
# Do some sanity checks and save config to arsg.model_dir
|
114 |
+
configs = check_modify_and_save_config(args, configs)
|
115 |
+
|
116 |
+
# Tensorboard summary
|
117 |
+
writer = init_summarywriter(args)
|
118 |
+
|
119 |
+
# load checkpoint
|
120 |
+
model = configs[args.model]
|
121 |
+
start_step, start_epoch = 0, -1
|
122 |
+
if args.checkpoint is not None:
|
123 |
+
if os.path.exists(args.checkpoint):
|
124 |
+
state_dict = torch.load(args.checkpoint, map_location='cpu')
|
125 |
+
model.load_state_dict(state_dict, strict=False)
|
126 |
+
if 'step' in state_dict:
|
127 |
+
start_step = state_dict['step']
|
128 |
+
if 'epoch' in state_dict:
|
129 |
+
start_epoch = state_dict['epoch']
|
130 |
+
else:
|
131 |
+
logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
|
132 |
+
|
133 |
+
# Dispatch model from cpu to gpu
|
134 |
+
model = wrap_cuda_model(args, model)
|
135 |
+
|
136 |
+
# Get optimizer & scheduler
|
137 |
+
model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
|
138 |
+
scheduler.set_step(start_step)
|
139 |
+
if scheduler_d is not None:
|
140 |
+
scheduler_d.set_step(start_step)
|
141 |
+
|
142 |
+
# Save init checkpoints
|
143 |
+
info_dict = deepcopy(configs['train_conf'])
|
144 |
+
info_dict['step'] = start_step
|
145 |
+
info_dict['epoch'] = start_epoch
|
146 |
+
save_model(model, 'init', info_dict)
|
147 |
+
|
148 |
+
# Get executor
|
149 |
+
executor = Executor(gan=gan)
|
150 |
+
executor.step = start_step
|
151 |
+
|
152 |
+
# Init scaler, used for pytorch amp mixed precision training
|
153 |
+
scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
|
154 |
+
print('start step {} start epoch {}'.format(start_step, start_epoch))
|
155 |
+
# Start training loop
|
156 |
+
for epoch in range(start_epoch + 1, info_dict['max_epoch']):
|
157 |
+
executor.epoch = epoch
|
158 |
+
train_dataset.set_epoch(epoch)
|
159 |
+
dist.barrier()
|
160 |
+
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
|
161 |
+
if gan is True:
|
162 |
+
executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
163 |
+
writer, info_dict, scaler, group_join)
|
164 |
+
else:
|
165 |
+
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join)
|
166 |
+
dist.destroy_process_group(group_join)
|
167 |
+
|
168 |
+
|
169 |
+
if __name__ == '__main__':
|
170 |
+
main()
|
cosyvoice/cli/__init__.py
ADDED
File without changes
|
cosyvoice/cli/cosyvoice.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
import time
|
16 |
+
from tqdm import tqdm
|
17 |
+
from hyperpyyaml import load_hyperpyyaml
|
18 |
+
from modelscope import snapshot_download
|
19 |
+
import torch
|
20 |
+
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
21 |
+
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
22 |
+
from cosyvoice.utils.file_utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
class CosyVoice:
|
26 |
+
|
27 |
+
def __init__(self, model_dir, load_jit=True, load_onnx=False, fp16=True):
|
28 |
+
instruct = True if '-Instruct' in model_dir else False
|
29 |
+
self.model_dir = model_dir
|
30 |
+
if not os.path.exists(model_dir):
|
31 |
+
model_dir = snapshot_download(model_dir)
|
32 |
+
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
33 |
+
configs = load_hyperpyyaml(f)
|
34 |
+
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
35 |
+
configs['feat_extractor'],
|
36 |
+
'{}/campplus.onnx'.format(model_dir),
|
37 |
+
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
38 |
+
'{}/spk2info.pt'.format(model_dir),
|
39 |
+
instruct,
|
40 |
+
configs['allowed_special'])
|
41 |
+
self.sample_rate = configs['sample_rate']
|
42 |
+
if torch.cuda.is_available() is False and (fp16 is True or load_jit is True):
|
43 |
+
load_jit = False
|
44 |
+
fp16 = False
|
45 |
+
logging.warning('cpu do not support fp16 and jit, force set to False')
|
46 |
+
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
|
47 |
+
self.model.load('{}/llm.pt'.format(model_dir),
|
48 |
+
'{}/flow.pt'.format(model_dir),
|
49 |
+
'{}/hift.pt'.format(model_dir))
|
50 |
+
if load_jit:
|
51 |
+
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
52 |
+
'{}/llm.llm.fp16.zip'.format(model_dir),
|
53 |
+
'{}/flow.encoder.fp32.zip'.format(model_dir))
|
54 |
+
if load_onnx:
|
55 |
+
self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir))
|
56 |
+
del configs
|
57 |
+
|
58 |
+
def list_avaliable_spks(self):
|
59 |
+
spks = list(self.frontend.spk2info.keys())
|
60 |
+
return spks
|
61 |
+
|
62 |
+
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0):
|
63 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
64 |
+
model_input = self.frontend.frontend_sft(i, spk_id)
|
65 |
+
start_time = time.time()
|
66 |
+
logging.info('synthesis text {}'.format(i))
|
67 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
68 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
69 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
70 |
+
yield model_output
|
71 |
+
start_time = time.time()
|
72 |
+
|
73 |
+
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0):
|
74 |
+
prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
75 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
76 |
+
if len(i) < 0.5 * len(prompt_text):
|
77 |
+
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
78 |
+
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
|
79 |
+
start_time = time.time()
|
80 |
+
logging.info('synthesis text {}'.format(i))
|
81 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
82 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
83 |
+
logging.info('yield speech len {}, rtf {}, abs mean {}, std {}'.format(speech_len, (time.time() - start_time) / speech_len, model_output['tts_speech'].abs().mean(), model_output['tts_speech'].std()))
|
84 |
+
yield model_output
|
85 |
+
start_time = time.time()
|
86 |
+
|
87 |
+
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0):
|
88 |
+
if self.frontend.instruct is True:
|
89 |
+
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
90 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
91 |
+
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
92 |
+
start_time = time.time()
|
93 |
+
logging.info('synthesis text {}'.format(i))
|
94 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
95 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
96 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
97 |
+
yield model_output
|
98 |
+
start_time = time.time()
|
99 |
+
|
100 |
+
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0):
|
101 |
+
if self.frontend.instruct is False:
|
102 |
+
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
103 |
+
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
104 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
105 |
+
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
106 |
+
start_time = time.time()
|
107 |
+
logging.info('synthesis text {}'.format(i))
|
108 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
109 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
110 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
111 |
+
yield model_output
|
112 |
+
start_time = time.time()
|
113 |
+
|
114 |
+
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0):
|
115 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
116 |
+
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
117 |
+
start_time = time.time()
|
118 |
+
logging.info('synthesis text {}'.format(i))
|
119 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
120 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
121 |
+
logging.info('yield speech len {}, rtf {}, abs mean {}, std {}'.format(speech_len, (time.time() - start_time) / speech_len, model_output['tts_speech'].abs().mean(), model_output['tts_speech'].std()))
|
122 |
+
yield model_output
|
123 |
+
start_time = time.time()
|
124 |
+
|
125 |
+
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
126 |
+
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
127 |
+
start_time = time.time()
|
128 |
+
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
|
129 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
130 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
131 |
+
yield model_output
|
132 |
+
start_time = time.time()
|
133 |
+
|
134 |
+
class CosyVoice2(CosyVoice):
|
135 |
+
|
136 |
+
def __init__(self, model_dir, load_jit=False, load_onnx=False, load_trt=False):
|
137 |
+
instruct = True if '-Instruct' in model_dir else False
|
138 |
+
self.model_dir = model_dir
|
139 |
+
if not os.path.exists(model_dir):
|
140 |
+
model_dir = snapshot_download(model_dir)
|
141 |
+
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
142 |
+
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
143 |
+
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
144 |
+
configs['feat_extractor'],
|
145 |
+
'{}/campplus.onnx'.format(model_dir),
|
146 |
+
'{}/speech_tokenizer_v2.onnx'.format(model_dir),
|
147 |
+
'{}/spk2info.pt'.format(model_dir),
|
148 |
+
instruct,
|
149 |
+
configs['allowed_special'])
|
150 |
+
self.sample_rate = configs['sample_rate']
|
151 |
+
if torch.cuda.is_available() is False and load_jit is True:
|
152 |
+
load_jit = False
|
153 |
+
logging.warning('cpu do not support jit, force set to False')
|
154 |
+
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'])
|
155 |
+
self.model.load('{}/llm.pt'.format(model_dir),
|
156 |
+
'{}/flow.pt'.format(model_dir),
|
157 |
+
'{}/hift.pt'.format(model_dir))
|
158 |
+
if load_jit:
|
159 |
+
self.model.load_jit('{}/flow.encoder.fp32.zip'.format(model_dir))
|
160 |
+
if load_trt is True and load_onnx is True:
|
161 |
+
load_onnx = False
|
162 |
+
logging.warning('can not set both load_trt and load_onnx to True, force set load_onnx to False')
|
163 |
+
if load_onnx:
|
164 |
+
self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir))
|
165 |
+
if load_trt:
|
166 |
+
self.model.load_trt('{}/flow.decoder.estimator.fp16.a10.plan'.format(model_dir))
|
167 |
+
del configs
|
cosyvoice/cli/frontend.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from functools import partial
|
15 |
+
import json
|
16 |
+
import onnxruntime
|
17 |
+
import torch
|
18 |
+
import numpy as np
|
19 |
+
import whisper
|
20 |
+
from typing import Callable
|
21 |
+
import torchaudio.compliance.kaldi as kaldi
|
22 |
+
import torchaudio
|
23 |
+
import os
|
24 |
+
import re
|
25 |
+
import inflect
|
26 |
+
try:
|
27 |
+
import ttsfrd
|
28 |
+
use_ttsfrd = True
|
29 |
+
except ImportError:
|
30 |
+
print("failed to import ttsfrd, use WeTextProcessing instead")
|
31 |
+
from tn.chinese.normalizer import Normalizer as ZhNormalizer
|
32 |
+
from tn.english.normalizer import Normalizer as EnNormalizer
|
33 |
+
use_ttsfrd = False
|
34 |
+
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph
|
35 |
+
|
36 |
+
|
37 |
+
class CosyVoiceFrontEnd:
|
38 |
+
|
39 |
+
def __init__(self,
|
40 |
+
get_tokenizer: Callable,
|
41 |
+
feat_extractor: Callable,
|
42 |
+
campplus_model: str,
|
43 |
+
speech_tokenizer_model: str,
|
44 |
+
spk2info: str = '',
|
45 |
+
instruct: bool = False,
|
46 |
+
allowed_special: str = 'all'):
|
47 |
+
self.tokenizer = get_tokenizer()
|
48 |
+
self.feat_extractor = feat_extractor
|
49 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
50 |
+
option = onnxruntime.SessionOptions()
|
51 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
52 |
+
option.intra_op_num_threads = 1
|
53 |
+
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
54 |
+
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option,
|
55 |
+
providers=["CUDAExecutionProvider" if torch.cuda.is_available() else
|
56 |
+
"CPUExecutionProvider"])
|
57 |
+
if os.path.exists(spk2info):
|
58 |
+
self.spk2info = torch.load(spk2info, map_location=self.device)
|
59 |
+
else:
|
60 |
+
self.spk2info = {}
|
61 |
+
self.instruct = instruct
|
62 |
+
self.allowed_special = allowed_special
|
63 |
+
self.inflect_parser = inflect.engine()
|
64 |
+
self.use_ttsfrd = use_ttsfrd
|
65 |
+
if self.use_ttsfrd:
|
66 |
+
self.frd = ttsfrd.TtsFrontendEngine()
|
67 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
68 |
+
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \
|
69 |
+
'failed to initialize ttsfrd resource'
|
70 |
+
self.frd.set_lang_type('pinyinvg')
|
71 |
+
else:
|
72 |
+
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False)
|
73 |
+
self.en_tn_model = EnNormalizer()
|
74 |
+
|
75 |
+
def _extract_text_token(self, text):
|
76 |
+
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
|
77 |
+
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
|
78 |
+
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
|
79 |
+
return text_token, text_token_len
|
80 |
+
|
81 |
+
def _extract_speech_token(self, speech):
|
82 |
+
assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
|
83 |
+
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
84 |
+
speech_token = self.speech_tokenizer_session.run(None,
|
85 |
+
{self.speech_tokenizer_session.get_inputs()[0].name:
|
86 |
+
feat.detach().cpu().numpy(),
|
87 |
+
self.speech_tokenizer_session.get_inputs()[1].name:
|
88 |
+
np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
89 |
+
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
|
90 |
+
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
91 |
+
return speech_token, speech_token_len
|
92 |
+
|
93 |
+
def _extract_spk_embedding(self, speech):
|
94 |
+
feat = kaldi.fbank(speech,
|
95 |
+
num_mel_bins=80,
|
96 |
+
dither=0,
|
97 |
+
sample_frequency=16000)
|
98 |
+
feat = feat - feat.mean(dim=0, keepdim=True)
|
99 |
+
embedding = self.campplus_session.run(None,
|
100 |
+
{self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
101 |
+
embedding = torch.tensor([embedding]).to(self.device)
|
102 |
+
return embedding
|
103 |
+
|
104 |
+
def _extract_speech_feat(self, speech):
|
105 |
+
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
|
106 |
+
speech_feat = speech_feat.unsqueeze(dim=0)
|
107 |
+
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
108 |
+
return speech_feat, speech_feat_len
|
109 |
+
|
110 |
+
def text_normalize(self, text, split=True):
|
111 |
+
text = text.strip()
|
112 |
+
if contains_chinese(text):
|
113 |
+
if self.use_ttsfrd:
|
114 |
+
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
115 |
+
text = ''.join(texts)
|
116 |
+
else:
|
117 |
+
text = self.zh_tn_model.normalize(text)
|
118 |
+
text = text.replace("\n", "")
|
119 |
+
text = replace_blank(text)
|
120 |
+
text = replace_corner_mark(text)
|
121 |
+
text = text.replace(".", "。")
|
122 |
+
text = text.replace(" - ", ",")
|
123 |
+
text = remove_bracket(text)
|
124 |
+
text = re.sub(r'[,,、]+$', '。', text)
|
125 |
+
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
126 |
+
token_min_n=60, merge_len=20, comma_split=False))
|
127 |
+
else:
|
128 |
+
if self.use_ttsfrd:
|
129 |
+
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
130 |
+
text = ''.join(texts)
|
131 |
+
else:
|
132 |
+
text = self.en_tn_model.normalize(text)
|
133 |
+
text = spell_out_number(text, self.inflect_parser)
|
134 |
+
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
135 |
+
token_min_n=60, merge_len=20, comma_split=False))
|
136 |
+
if split is False:
|
137 |
+
return text
|
138 |
+
return texts
|
139 |
+
|
140 |
+
def frontend_sft(self, tts_text, spk_id):
|
141 |
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
142 |
+
embedding = self.spk2info[spk_id]['embedding']
|
143 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
144 |
+
return model_input
|
145 |
+
|
146 |
+
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate):
|
147 |
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
148 |
+
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
149 |
+
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
150 |
+
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
151 |
+
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
152 |
+
if resample_rate == 24000:
|
153 |
+
# cosyvoice2, force speech_feat % speech_token = 2
|
154 |
+
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
155 |
+
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2* token_len
|
156 |
+
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
157 |
+
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
158 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
159 |
+
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
160 |
+
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
161 |
+
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
162 |
+
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
163 |
+
'llm_embedding': embedding, 'flow_embedding': embedding}
|
164 |
+
return model_input
|
165 |
+
|
166 |
+
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate):
|
167 |
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
168 |
+
prompt_text_token, prompt_text_token_len = self._extract_text_token(instruct_text + '<|endofprompt|>')
|
169 |
+
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
170 |
+
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
171 |
+
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
172 |
+
if resample_rate == 24000:
|
173 |
+
# cosyvoice2, force speech_feat % speech_token = 2
|
174 |
+
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
175 |
+
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2* token_len
|
176 |
+
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
177 |
+
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
178 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
179 |
+
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
180 |
+
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
181 |
+
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
182 |
+
'llm_embedding': embedding, 'flow_embedding': embedding}
|
183 |
+
return model_input
|
184 |
+
|
185 |
+
def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate):
|
186 |
+
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate)
|
187 |
+
# in cross lingual mode, we remove prompt in llm
|
188 |
+
del model_input['prompt_text']
|
189 |
+
del model_input['prompt_text_len']
|
190 |
+
del model_input['llm_prompt_speech_token']
|
191 |
+
del model_input['llm_prompt_speech_token_len']
|
192 |
+
return model_input
|
193 |
+
|
194 |
+
def frontend_instruct(self, tts_text, spk_id, instruct_text):
|
195 |
+
model_input = self.frontend_sft(tts_text, spk_id)
|
196 |
+
# in instruct mode, we remove spk_embedding in llm due to information leakage
|
197 |
+
del model_input['llm_embedding']
|
198 |
+
instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '<endofprompt>')
|
199 |
+
model_input['prompt_text'] = instruct_text_token
|
200 |
+
model_input['prompt_text_len'] = instruct_text_token_len
|
201 |
+
return model_input
|
202 |
+
|
203 |
+
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
|
204 |
+
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
205 |
+
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
206 |
+
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
207 |
+
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
208 |
+
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
|
209 |
+
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
|
210 |
+
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
|
211 |
+
'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
|
212 |
+
'flow_embedding': embedding}
|
213 |
+
return model_input
|
cosyvoice/cli/model.py
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import numpy as np
|
16 |
+
import threading
|
17 |
+
import time
|
18 |
+
from torch.nn import functional as F
|
19 |
+
from contextlib import nullcontext
|
20 |
+
import uuid
|
21 |
+
from cosyvoice.utils.common import fade_in_out
|
22 |
+
|
23 |
+
|
24 |
+
class CosyVoiceModel:
|
25 |
+
|
26 |
+
def __init__(self,
|
27 |
+
llm: torch.nn.Module,
|
28 |
+
flow: torch.nn.Module,
|
29 |
+
hift: torch.nn.Module,
|
30 |
+
fp16: bool):
|
31 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
32 |
+
self.llm = llm
|
33 |
+
self.flow = flow
|
34 |
+
self.hift = hift
|
35 |
+
self.fp16 = fp16
|
36 |
+
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
37 |
+
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
38 |
+
self.token_overlap_len = 20
|
39 |
+
# mel fade in out
|
40 |
+
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
41 |
+
self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
42 |
+
# hift cache
|
43 |
+
self.mel_cache_len = 20
|
44 |
+
self.source_cache_len = int(self.mel_cache_len * 256)
|
45 |
+
# speech fade in out
|
46 |
+
self.speech_window = np.hamming(2 * self.source_cache_len)
|
47 |
+
# rtf and decoding related
|
48 |
+
self.stream_scale_factor = 1
|
49 |
+
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
50 |
+
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
51 |
+
self.lock = threading.Lock()
|
52 |
+
# dict used to store session related variable
|
53 |
+
self.tts_speech_token_dict = {}
|
54 |
+
self.llm_end_dict = {}
|
55 |
+
self.mel_overlap_dict = {}
|
56 |
+
self.flow_cache_dict = {}
|
57 |
+
self.hift_cache_dict = {}
|
58 |
+
|
59 |
+
def load(self, llm_model, flow_model, hift_model):
|
60 |
+
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
61 |
+
self.llm.to(self.device).eval()
|
62 |
+
if self.fp16 is True:
|
63 |
+
self.llm.half()
|
64 |
+
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
|
65 |
+
self.flow.to(self.device).eval()
|
66 |
+
# in case hift_model is a hifigan model
|
67 |
+
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
|
68 |
+
self.hift.load_state_dict(hift_state_dict, strict=True)
|
69 |
+
self.hift.to(self.device).eval()
|
70 |
+
|
71 |
+
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
|
72 |
+
assert self.fp16 is True, "we only provide fp16 jit model, set fp16=True if you want to use jit model"
|
73 |
+
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
|
74 |
+
self.llm.text_encoder = llm_text_encoder
|
75 |
+
llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
|
76 |
+
self.llm.llm = llm_llm
|
77 |
+
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
78 |
+
self.flow.encoder = flow_encoder
|
79 |
+
|
80 |
+
def load_onnx(self, flow_decoder_estimator_model):
|
81 |
+
import onnxruntime
|
82 |
+
option = onnxruntime.SessionOptions()
|
83 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
84 |
+
option.intra_op_num_threads = 1
|
85 |
+
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
86 |
+
del self.flow.decoder.estimator
|
87 |
+
self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
|
88 |
+
|
89 |
+
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
90 |
+
if self.fp16 is True:
|
91 |
+
llm_embedding = llm_embedding.half()
|
92 |
+
with self.llm_context:
|
93 |
+
for i in self.llm.inference(text=text.to(self.device),
|
94 |
+
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
95 |
+
prompt_text=prompt_text.to(self.device),
|
96 |
+
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
97 |
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
98 |
+
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
99 |
+
embedding=llm_embedding.to(self.device)):
|
100 |
+
self.tts_speech_token_dict[uuid].append(i)
|
101 |
+
self.llm_end_dict[uuid] = True
|
102 |
+
|
103 |
+
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
104 |
+
tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
|
105 |
+
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
106 |
+
prompt_token=prompt_token.to(self.device),
|
107 |
+
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
108 |
+
prompt_feat=prompt_feat.to(self.device),
|
109 |
+
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
110 |
+
embedding=embedding.to(self.device),
|
111 |
+
flow_cache=self.flow_cache_dict[uuid])
|
112 |
+
self.flow_cache_dict[uuid] = flow_cache
|
113 |
+
|
114 |
+
# mel overlap fade in out
|
115 |
+
if self.mel_overlap_dict[uuid].shape[2] != 0:
|
116 |
+
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
|
117 |
+
# append hift cache
|
118 |
+
if self.hift_cache_dict[uuid] is not None:
|
119 |
+
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
120 |
+
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
121 |
+
else:
|
122 |
+
hift_cache_source = torch.zeros(1, 1, 0)
|
123 |
+
# keep overlap mel and hift cache
|
124 |
+
if finalize is False:
|
125 |
+
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
126 |
+
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
127 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
128 |
+
if self.hift_cache_dict[uuid] is not None:
|
129 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
130 |
+
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
131 |
+
'source': tts_source[:, :, -self.source_cache_len:],
|
132 |
+
'speech': tts_speech[:, -self.source_cache_len:]}
|
133 |
+
tts_speech = tts_speech[:, :-self.source_cache_len]
|
134 |
+
else:
|
135 |
+
if speed != 1.0:
|
136 |
+
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
137 |
+
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
138 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
139 |
+
if self.hift_cache_dict[uuid] is not None:
|
140 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
141 |
+
return tts_speech
|
142 |
+
|
143 |
+
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
144 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
145 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
146 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
147 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
148 |
+
# this_uuid is used to track variables related to this inference thread
|
149 |
+
this_uuid = str(uuid.uuid1())
|
150 |
+
with self.lock:
|
151 |
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
152 |
+
self.hift_cache_dict[this_uuid] = None
|
153 |
+
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
154 |
+
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
155 |
+
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
156 |
+
p.start()
|
157 |
+
if stream is True:
|
158 |
+
token_hop_len = self.token_min_hop_len
|
159 |
+
while True:
|
160 |
+
time.sleep(0.1)
|
161 |
+
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
162 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
163 |
+
.unsqueeze(dim=0)
|
164 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
165 |
+
prompt_token=flow_prompt_speech_token,
|
166 |
+
prompt_feat=prompt_speech_feat,
|
167 |
+
embedding=flow_embedding,
|
168 |
+
uuid=this_uuid,
|
169 |
+
finalize=False)
|
170 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
171 |
+
with self.lock:
|
172 |
+
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
173 |
+
# increase token_hop_len for better speech quality
|
174 |
+
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
175 |
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
176 |
+
break
|
177 |
+
p.join()
|
178 |
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
179 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
180 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
181 |
+
prompt_token=flow_prompt_speech_token,
|
182 |
+
prompt_feat=prompt_speech_feat,
|
183 |
+
embedding=flow_embedding,
|
184 |
+
uuid=this_uuid,
|
185 |
+
finalize=True)
|
186 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
187 |
+
else:
|
188 |
+
# deal with all tokens
|
189 |
+
p.join()
|
190 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
191 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
192 |
+
prompt_token=flow_prompt_speech_token,
|
193 |
+
prompt_feat=prompt_speech_feat,
|
194 |
+
embedding=flow_embedding,
|
195 |
+
uuid=this_uuid,
|
196 |
+
finalize=True,
|
197 |
+
speed=speed)
|
198 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
199 |
+
with self.lock:
|
200 |
+
self.tts_speech_token_dict.pop(this_uuid)
|
201 |
+
self.llm_end_dict.pop(this_uuid)
|
202 |
+
self.mel_overlap_dict.pop(this_uuid)
|
203 |
+
self.hift_cache_dict.pop(this_uuid)
|
204 |
+
|
205 |
+
def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
|
206 |
+
# this_uuid is used to track variables related to this inference thread
|
207 |
+
this_uuid = str(uuid.uuid1())
|
208 |
+
with self.lock:
|
209 |
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
|
210 |
+
self.hift_cache_dict[this_uuid] = None
|
211 |
+
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
212 |
+
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
213 |
+
if stream is True:
|
214 |
+
token_hop_len = self.token_min_hop_len
|
215 |
+
while True:
|
216 |
+
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
217 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
218 |
+
.unsqueeze(dim=0)
|
219 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
220 |
+
prompt_token=flow_prompt_speech_token,
|
221 |
+
prompt_feat=prompt_speech_feat,
|
222 |
+
embedding=flow_embedding,
|
223 |
+
uuid=this_uuid,
|
224 |
+
finalize=False)
|
225 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
226 |
+
with self.lock:
|
227 |
+
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
228 |
+
# increase token_hop_len for better speech quality
|
229 |
+
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
230 |
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
231 |
+
break
|
232 |
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
233 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid], dim=1).unsqueeze(dim=0)
|
234 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
235 |
+
prompt_token=flow_prompt_speech_token,
|
236 |
+
prompt_feat=prompt_speech_feat,
|
237 |
+
embedding=flow_embedding,
|
238 |
+
uuid=this_uuid,
|
239 |
+
finalize=True)
|
240 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
241 |
+
else:
|
242 |
+
# deal with all tokens
|
243 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
244 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
245 |
+
prompt_token=flow_prompt_speech_token,
|
246 |
+
prompt_feat=prompt_speech_feat,
|
247 |
+
embedding=flow_embedding,
|
248 |
+
uuid=this_uuid,
|
249 |
+
finalize=True,
|
250 |
+
speed=speed)
|
251 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
252 |
+
with self.lock:
|
253 |
+
self.tts_speech_token_dict.pop(this_uuid)
|
254 |
+
self.llm_end_dict.pop(this_uuid)
|
255 |
+
self.mel_overlap_dict.pop(this_uuid)
|
256 |
+
self.hift_cache_dict.pop(this_uuid)
|
257 |
+
|
258 |
+
|
259 |
+
class CosyVoice2Model:
|
260 |
+
|
261 |
+
def __init__(self,
|
262 |
+
llm: torch.nn.Module,
|
263 |
+
flow: torch.nn.Module,
|
264 |
+
hift: torch.nn.Module):
|
265 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
266 |
+
self.llm = llm
|
267 |
+
self.flow = flow
|
268 |
+
self.hift = hift
|
269 |
+
self.token_hop_len = 2 * self.flow.input_frame_rate
|
270 |
+
# here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
|
271 |
+
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
|
272 |
+
self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
|
273 |
+
# hift cache
|
274 |
+
self.mel_cache_len = 8
|
275 |
+
self.source_cache_len = int(self.mel_cache_len * 480)
|
276 |
+
# speech fade in out
|
277 |
+
self.speech_window = np.hamming(2 * self.source_cache_len)
|
278 |
+
# rtf and decoding related
|
279 |
+
self.stream_scale_factor = 1
|
280 |
+
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
281 |
+
self.lock = threading.Lock()
|
282 |
+
# dict used to store session related variable
|
283 |
+
self.tts_speech_token_dict = {}
|
284 |
+
self.llm_end_dict = {}
|
285 |
+
self.hift_cache_dict = {}
|
286 |
+
|
287 |
+
def load(self, llm_model, flow_model, hift_model):
|
288 |
+
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
289 |
+
self.llm.to(self.device).eval()
|
290 |
+
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
|
291 |
+
self.flow.to(self.device).eval()
|
292 |
+
self.flow.decoder.fp16 = False
|
293 |
+
# in case hift_model is a hifigan model
|
294 |
+
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
|
295 |
+
self.hift.load_state_dict(hift_state_dict, strict=True)
|
296 |
+
self.hift.to(self.device).eval()
|
297 |
+
|
298 |
+
def load_jit(self, flow_encoder_model):
|
299 |
+
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
300 |
+
self.flow.encoder = flow_encoder
|
301 |
+
|
302 |
+
def load_onnx(self, flow_decoder_estimator_model):
|
303 |
+
import onnxruntime
|
304 |
+
option = onnxruntime.SessionOptions()
|
305 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
306 |
+
option.intra_op_num_threads = 1
|
307 |
+
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
308 |
+
del self.flow.decoder.estimator
|
309 |
+
self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
|
310 |
+
|
311 |
+
def load_trt(self, flow_decoder_estimator_model):
|
312 |
+
del self.flow.decoder.estimator
|
313 |
+
import tensorrt as trt
|
314 |
+
with open(flow_decoder_estimator_model, 'rb') as f:
|
315 |
+
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
316 |
+
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
|
317 |
+
self.flow.decoder.fp16 = True
|
318 |
+
|
319 |
+
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
320 |
+
with self.llm_context:
|
321 |
+
for i in self.llm.inference(text=text.to(self.device),
|
322 |
+
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
323 |
+
prompt_text=prompt_text.to(self.device),
|
324 |
+
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
325 |
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
326 |
+
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
327 |
+
embedding=llm_embedding.to(self.device)):
|
328 |
+
self.tts_speech_token_dict[uuid].append(i)
|
329 |
+
self.llm_end_dict[uuid] = True
|
330 |
+
|
331 |
+
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
|
332 |
+
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
333 |
+
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
334 |
+
prompt_token=prompt_token.to(self.device),
|
335 |
+
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
336 |
+
prompt_feat=prompt_feat.to(self.device),
|
337 |
+
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
338 |
+
embedding=embedding.to(self.device),
|
339 |
+
finalize=finalize)
|
340 |
+
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
341 |
+
# append hift cache
|
342 |
+
if self.hift_cache_dict[uuid] is not None:
|
343 |
+
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
344 |
+
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
345 |
+
else:
|
346 |
+
hift_cache_source = torch.zeros(1, 1, 0)
|
347 |
+
# keep overlap mel and hift cache
|
348 |
+
if finalize is False:
|
349 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
350 |
+
if self.hift_cache_dict[uuid] is not None:
|
351 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
352 |
+
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
353 |
+
'source': tts_source[:, :, -self.source_cache_len:],
|
354 |
+
'speech': tts_speech[:, -self.source_cache_len:]}
|
355 |
+
tts_speech = tts_speech[:, :-self.source_cache_len]
|
356 |
+
else:
|
357 |
+
if speed != 1.0:
|
358 |
+
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
359 |
+
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
360 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
361 |
+
if self.hift_cache_dict[uuid] is not None:
|
362 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
363 |
+
return tts_speech
|
364 |
+
|
365 |
+
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
366 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
367 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
368 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
369 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
370 |
+
# this_uuid is used to track variables related to this inference thread
|
371 |
+
this_uuid = str(uuid.uuid1())
|
372 |
+
with self.lock:
|
373 |
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
374 |
+
self.hift_cache_dict[this_uuid] = None
|
375 |
+
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
376 |
+
p.start()
|
377 |
+
if stream is True:
|
378 |
+
token_offset = 0
|
379 |
+
while True:
|
380 |
+
time.sleep(0.1)
|
381 |
+
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
|
382 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]) \
|
383 |
+
.unsqueeze(dim=0)
|
384 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
385 |
+
prompt_token=flow_prompt_speech_token,
|
386 |
+
prompt_feat=prompt_speech_feat,
|
387 |
+
embedding=flow_embedding,
|
388 |
+
uuid=this_uuid,
|
389 |
+
token_offset=token_offset,
|
390 |
+
finalize=False)
|
391 |
+
token_offset += self.token_hop_len
|
392 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
393 |
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
|
394 |
+
break
|
395 |
+
p.join()
|
396 |
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
397 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
398 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
399 |
+
prompt_token=flow_prompt_speech_token,
|
400 |
+
prompt_feat=prompt_speech_feat,
|
401 |
+
embedding=flow_embedding,
|
402 |
+
uuid=this_uuid,
|
403 |
+
token_offset=token_offset,
|
404 |
+
finalize=True)
|
405 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
406 |
+
else:
|
407 |
+
# deal with all tokens
|
408 |
+
p.join()
|
409 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
410 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
411 |
+
prompt_token=flow_prompt_speech_token,
|
412 |
+
prompt_feat=prompt_speech_feat,
|
413 |
+
embedding=flow_embedding,
|
414 |
+
uuid=this_uuid,
|
415 |
+
token_offset=0,
|
416 |
+
finalize=True,
|
417 |
+
speed=speed)
|
418 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
419 |
+
with self.lock:
|
420 |
+
self.tts_speech_token_dict.pop(this_uuid)
|
421 |
+
self.llm_end_dict.pop(this_uuid)
|
cosyvoice/dataset/__init__.py
ADDED
File without changes
|
cosyvoice/dataset/dataset.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import random
|
17 |
+
import json
|
18 |
+
import math
|
19 |
+
from functools import partial
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.distributed as dist
|
23 |
+
from torch.utils.data import IterableDataset
|
24 |
+
from cosyvoice.utils.file_utils import read_lists, read_json_lists
|
25 |
+
|
26 |
+
|
27 |
+
class Processor(IterableDataset):
|
28 |
+
|
29 |
+
def __init__(self, source, f, *args, **kw):
|
30 |
+
assert callable(f)
|
31 |
+
self.source = source
|
32 |
+
self.f = f
|
33 |
+
self.args = args
|
34 |
+
self.kw = kw
|
35 |
+
|
36 |
+
def set_epoch(self, epoch):
|
37 |
+
self.source.set_epoch(epoch)
|
38 |
+
|
39 |
+
def __iter__(self):
|
40 |
+
""" Return an iterator over the source dataset processed by the
|
41 |
+
given processor.
|
42 |
+
"""
|
43 |
+
assert self.source is not None
|
44 |
+
assert callable(self.f)
|
45 |
+
return self.f(iter(self.source), *self.args, **self.kw)
|
46 |
+
|
47 |
+
def apply(self, f):
|
48 |
+
assert callable(f)
|
49 |
+
return Processor(self, f, *self.args, **self.kw)
|
50 |
+
|
51 |
+
|
52 |
+
class DistributedSampler:
|
53 |
+
|
54 |
+
def __init__(self, shuffle=True, partition=True):
|
55 |
+
self.epoch = -1
|
56 |
+
self.update()
|
57 |
+
self.shuffle = shuffle
|
58 |
+
self.partition = partition
|
59 |
+
|
60 |
+
def update(self):
|
61 |
+
assert dist.is_available()
|
62 |
+
if dist.is_initialized():
|
63 |
+
self.rank = dist.get_rank()
|
64 |
+
self.world_size = dist.get_world_size()
|
65 |
+
else:
|
66 |
+
self.rank = 0
|
67 |
+
self.world_size = 1
|
68 |
+
worker_info = torch.utils.data.get_worker_info()
|
69 |
+
if worker_info is None:
|
70 |
+
self.worker_id = 0
|
71 |
+
self.num_workers = 1
|
72 |
+
else:
|
73 |
+
self.worker_id = worker_info.id
|
74 |
+
self.num_workers = worker_info.num_workers
|
75 |
+
return dict(rank=self.rank,
|
76 |
+
world_size=self.world_size,
|
77 |
+
worker_id=self.worker_id,
|
78 |
+
num_workers=self.num_workers)
|
79 |
+
|
80 |
+
def set_epoch(self, epoch):
|
81 |
+
self.epoch = epoch
|
82 |
+
|
83 |
+
def sample(self, data):
|
84 |
+
""" Sample data according to rank/world_size/num_workers
|
85 |
+
|
86 |
+
Args:
|
87 |
+
data(List): input data list
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
List: data list after sample
|
91 |
+
"""
|
92 |
+
data = list(range(len(data)))
|
93 |
+
# force datalist even
|
94 |
+
if self.partition:
|
95 |
+
if self.shuffle:
|
96 |
+
random.Random(self.epoch).shuffle(data)
|
97 |
+
if len(data) < self.world_size:
|
98 |
+
data = data * math.ceil(self.world_size / len(data))
|
99 |
+
data = data[:self.world_size]
|
100 |
+
data = data[self.rank::self.world_size]
|
101 |
+
if len(data) < self.num_workers:
|
102 |
+
data = data * math.ceil(self.num_workers / len(data))
|
103 |
+
data = data[:self.num_workers]
|
104 |
+
data = data[self.worker_id::self.num_workers]
|
105 |
+
return data
|
106 |
+
|
107 |
+
|
108 |
+
class DataList(IterableDataset):
|
109 |
+
|
110 |
+
def __init__(self, lists, shuffle=True, partition=True):
|
111 |
+
self.lists = lists
|
112 |
+
self.sampler = DistributedSampler(shuffle, partition)
|
113 |
+
|
114 |
+
def set_epoch(self, epoch):
|
115 |
+
self.sampler.set_epoch(epoch)
|
116 |
+
|
117 |
+
def __iter__(self):
|
118 |
+
sampler_info = self.sampler.update()
|
119 |
+
indexes = self.sampler.sample(self.lists)
|
120 |
+
for index in indexes:
|
121 |
+
data = dict(src=self.lists[index])
|
122 |
+
data.update(sampler_info)
|
123 |
+
yield data
|
124 |
+
|
125 |
+
|
126 |
+
def Dataset(data_list_file,
|
127 |
+
data_pipeline,
|
128 |
+
mode='train',
|
129 |
+
gan=False,
|
130 |
+
shuffle=True,
|
131 |
+
partition=True,
|
132 |
+
tts_file='',
|
133 |
+
prompt_utt2data=''):
|
134 |
+
""" Construct dataset from arguments
|
135 |
+
|
136 |
+
We have two shuffle stage in the Dataset. The first is global
|
137 |
+
shuffle at shards tar/raw file level. The second is global shuffle
|
138 |
+
at training samples level.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
data_type(str): raw/shard
|
142 |
+
tokenizer (BaseTokenizer): tokenizer to tokenize
|
143 |
+
partition(bool): whether to do data partition in terms of rank
|
144 |
+
"""
|
145 |
+
assert mode in ['train', 'inference']
|
146 |
+
lists = read_lists(data_list_file)
|
147 |
+
if mode == 'inference':
|
148 |
+
with open(tts_file) as f:
|
149 |
+
tts_data = json.load(f)
|
150 |
+
utt2lists = read_json_lists(prompt_utt2data)
|
151 |
+
# filter unnecessary file in inference mode
|
152 |
+
lists = list({utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists})
|
153 |
+
dataset = DataList(lists,
|
154 |
+
shuffle=shuffle,
|
155 |
+
partition=partition)
|
156 |
+
if mode == 'inference':
|
157 |
+
# map partial arg to parquet_opener func in inference mode
|
158 |
+
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
|
159 |
+
if gan is True:
|
160 |
+
# map partial arg to padding func in gan mode
|
161 |
+
data_pipeline[-1] = partial(data_pipeline[-1], gan=gan)
|
162 |
+
for func in data_pipeline:
|
163 |
+
dataset = Processor(dataset, func, mode=mode)
|
164 |
+
return dataset
|
cosyvoice/dataset/processor.py
ADDED
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import logging
|
15 |
+
import random
|
16 |
+
|
17 |
+
import pyarrow.parquet as pq
|
18 |
+
from io import BytesIO
|
19 |
+
import torch
|
20 |
+
import torchaudio
|
21 |
+
from torch.nn.utils.rnn import pad_sequence
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
torchaudio.set_audio_backend('soundfile')
|
25 |
+
|
26 |
+
AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
|
27 |
+
|
28 |
+
|
29 |
+
def parquet_opener(data, mode='train', tts_data={}):
|
30 |
+
""" Give url or local file, return file descriptor
|
31 |
+
Inplace operation.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
data(Iterable[str]): url or local file list
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
Iterable[{src, stream}]
|
38 |
+
"""
|
39 |
+
for sample in data:
|
40 |
+
assert 'src' in sample
|
41 |
+
url = sample['src']
|
42 |
+
try:
|
43 |
+
for df in pq.ParquetFile(url).iter_batches(batch_size=64):
|
44 |
+
df = df.to_pandas()
|
45 |
+
for i in range(len(df)):
|
46 |
+
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
|
47 |
+
continue
|
48 |
+
sample.update(dict(df.loc[i]))
|
49 |
+
if mode == 'train':
|
50 |
+
# NOTE do not return sample directly, must initialize a new dict
|
51 |
+
yield {**sample}
|
52 |
+
else:
|
53 |
+
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
54 |
+
yield {**sample, 'tts_index': index, 'tts_text': text}
|
55 |
+
except Exception as ex:
|
56 |
+
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
57 |
+
|
58 |
+
|
59 |
+
def filter(data,
|
60 |
+
max_length=10240,
|
61 |
+
min_length=10,
|
62 |
+
token_max_length=200,
|
63 |
+
token_min_length=1,
|
64 |
+
min_output_input_ratio=0.0005,
|
65 |
+
max_output_input_ratio=1,
|
66 |
+
mode='train'):
|
67 |
+
""" Filter sample according to feature and label length
|
68 |
+
Inplace operation.
|
69 |
+
|
70 |
+
Args::
|
71 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
72 |
+
max_length: drop utterance which is greater than max_length(10ms)
|
73 |
+
min_length: drop utterance which is less than min_length(10ms)
|
74 |
+
token_max_length: drop utterance which is greater than
|
75 |
+
token_max_length, especially when use char unit for
|
76 |
+
english modeling
|
77 |
+
token_min_length: drop utterance which is
|
78 |
+
less than token_max_length
|
79 |
+
min_output_input_ratio: minimal ration of
|
80 |
+
token_length / feats_length(10ms)
|
81 |
+
max_output_input_ratio: maximum ration of
|
82 |
+
token_length / feats_length(10ms)
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
Iterable[{key, wav, label, sample_rate}]
|
86 |
+
"""
|
87 |
+
for sample in data:
|
88 |
+
sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
89 |
+
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
90 |
+
del sample['audio_data']
|
91 |
+
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
92 |
+
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
93 |
+
if num_frames < min_length:
|
94 |
+
continue
|
95 |
+
if num_frames > max_length:
|
96 |
+
continue
|
97 |
+
if len(sample['text_token']) < token_min_length:
|
98 |
+
continue
|
99 |
+
if len(sample['text_token']) > token_max_length:
|
100 |
+
continue
|
101 |
+
if len(sample['speech_token']) == 0:
|
102 |
+
continue
|
103 |
+
if num_frames != 0:
|
104 |
+
if len(sample['text_token']) / num_frames < min_output_input_ratio:
|
105 |
+
continue
|
106 |
+
if len(sample['text_token']) / num_frames > max_output_input_ratio:
|
107 |
+
continue
|
108 |
+
yield sample
|
109 |
+
|
110 |
+
|
111 |
+
def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
|
112 |
+
""" Resample data.
|
113 |
+
Inplace operation.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
117 |
+
resample_rate: target resample rate
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
Iterable[{key, wav, label, sample_rate}]
|
121 |
+
"""
|
122 |
+
for sample in data:
|
123 |
+
assert 'sample_rate' in sample
|
124 |
+
assert 'speech' in sample
|
125 |
+
sample_rate = sample['sample_rate']
|
126 |
+
waveform = sample['speech']
|
127 |
+
if sample_rate != resample_rate:
|
128 |
+
if sample_rate < min_sample_rate:
|
129 |
+
continue
|
130 |
+
sample['sample_rate'] = resample_rate
|
131 |
+
sample['speech'] = torchaudio.transforms.Resample(
|
132 |
+
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
|
133 |
+
max_val = sample['speech'].abs().max()
|
134 |
+
if max_val > 1:
|
135 |
+
sample['speech'] /= max_val
|
136 |
+
yield sample
|
137 |
+
|
138 |
+
|
139 |
+
def truncate(data, truncate_length=24576, mode='train'):
|
140 |
+
""" Truncate data.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
144 |
+
truncate_length: truncate length
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
Iterable[{key, wav, label, sample_rate}]
|
148 |
+
"""
|
149 |
+
for sample in data:
|
150 |
+
waveform = sample['speech']
|
151 |
+
if waveform.shape[1] > truncate_length:
|
152 |
+
start = random.randint(0, waveform.shape[1] - truncate_length)
|
153 |
+
waveform = waveform[:, start: start + truncate_length]
|
154 |
+
else:
|
155 |
+
waveform = torch.concat([waveform, torch.zeros(1, truncate_length - waveform.shape[1])], dim=1)
|
156 |
+
sample['speech'] = waveform
|
157 |
+
yield sample
|
158 |
+
|
159 |
+
|
160 |
+
def compute_fbank(data,
|
161 |
+
feat_extractor,
|
162 |
+
mode='train'):
|
163 |
+
""" Extract fbank
|
164 |
+
|
165 |
+
Args:
|
166 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
Iterable[{key, feat, label}]
|
170 |
+
"""
|
171 |
+
for sample in data:
|
172 |
+
assert 'sample_rate' in sample
|
173 |
+
assert 'speech' in sample
|
174 |
+
assert 'utt' in sample
|
175 |
+
assert 'text_token' in sample
|
176 |
+
waveform = sample['speech']
|
177 |
+
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
178 |
+
sample['speech_feat'] = mat
|
179 |
+
yield sample
|
180 |
+
|
181 |
+
|
182 |
+
def compute_f0(data, pitch_extractor, mode='train'):
|
183 |
+
""" Extract f0
|
184 |
+
|
185 |
+
Args:
|
186 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
Iterable[{key, feat, label}]
|
190 |
+
"""
|
191 |
+
for sample in data:
|
192 |
+
assert 'sample_rate' in sample
|
193 |
+
assert 'speech' in sample
|
194 |
+
assert 'utt' in sample
|
195 |
+
assert 'text_token' in sample
|
196 |
+
waveform = sample['speech']
|
197 |
+
mat = pitch_extractor(waveform).transpose(1, 2)
|
198 |
+
mat = F.interpolate(mat, size=sample['speech_feat'].shape[0], mode='linear')
|
199 |
+
sample['pitch_feat'] = mat[0, 0]
|
200 |
+
yield sample
|
201 |
+
|
202 |
+
|
203 |
+
def parse_embedding(data, normalize, mode='train'):
|
204 |
+
""" Parse utt_embedding/spk_embedding
|
205 |
+
|
206 |
+
Args:
|
207 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
Iterable[{key, feat, label}]
|
211 |
+
"""
|
212 |
+
for sample in data:
|
213 |
+
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
214 |
+
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
|
215 |
+
if normalize:
|
216 |
+
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
|
217 |
+
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
|
218 |
+
yield sample
|
219 |
+
|
220 |
+
|
221 |
+
def tokenize(data, get_tokenizer, allowed_special, mode='train'):
|
222 |
+
""" Decode text to chars or BPE
|
223 |
+
Inplace operation
|
224 |
+
|
225 |
+
Args:
|
226 |
+
data: Iterable[{key, wav, txt, sample_rate}]
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
Iterable[{key, wav, txt, tokens, label, sample_rate}]
|
230 |
+
"""
|
231 |
+
tokenizer = get_tokenizer()
|
232 |
+
for sample in data:
|
233 |
+
assert 'text' in sample
|
234 |
+
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
|
235 |
+
if mode == 'inference':
|
236 |
+
sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
|
237 |
+
yield sample
|
238 |
+
|
239 |
+
|
240 |
+
def shuffle(data, shuffle_size=10000, mode='train'):
|
241 |
+
""" Local shuffle the data
|
242 |
+
|
243 |
+
Args:
|
244 |
+
data: Iterable[{key, feat, label}]
|
245 |
+
shuffle_size: buffer size for shuffle
|
246 |
+
|
247 |
+
Returns:
|
248 |
+
Iterable[{key, feat, label}]
|
249 |
+
"""
|
250 |
+
buf = []
|
251 |
+
for sample in data:
|
252 |
+
buf.append(sample)
|
253 |
+
if len(buf) >= shuffle_size:
|
254 |
+
random.shuffle(buf)
|
255 |
+
for x in buf:
|
256 |
+
yield x
|
257 |
+
buf = []
|
258 |
+
# The sample left over
|
259 |
+
random.shuffle(buf)
|
260 |
+
for x in buf:
|
261 |
+
yield x
|
262 |
+
|
263 |
+
|
264 |
+
def sort(data, sort_size=500, mode='train'):
|
265 |
+
""" Sort the data by feature length.
|
266 |
+
Sort is used after shuffle and before batch, so we can group
|
267 |
+
utts with similar lengths into a batch, and `sort_size` should
|
268 |
+
be less than `shuffle_size`
|
269 |
+
|
270 |
+
Args:
|
271 |
+
data: Iterable[{key, feat, label}]
|
272 |
+
sort_size: buffer size for sort
|
273 |
+
|
274 |
+
Returns:
|
275 |
+
Iterable[{key, feat, label}]
|
276 |
+
"""
|
277 |
+
|
278 |
+
buf = []
|
279 |
+
for sample in data:
|
280 |
+
buf.append(sample)
|
281 |
+
if len(buf) >= sort_size:
|
282 |
+
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
283 |
+
for x in buf:
|
284 |
+
yield x
|
285 |
+
buf = []
|
286 |
+
# The sample left over
|
287 |
+
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
288 |
+
for x in buf:
|
289 |
+
yield x
|
290 |
+
|
291 |
+
|
292 |
+
def static_batch(data, batch_size=16):
|
293 |
+
""" Static batch the data by `batch_size`
|
294 |
+
|
295 |
+
Args:
|
296 |
+
data: Iterable[{key, feat, label}]
|
297 |
+
batch_size: batch size
|
298 |
+
|
299 |
+
Returns:
|
300 |
+
Iterable[List[{key, feat, label}]]
|
301 |
+
"""
|
302 |
+
buf = []
|
303 |
+
for sample in data:
|
304 |
+
buf.append(sample)
|
305 |
+
if len(buf) >= batch_size:
|
306 |
+
yield buf
|
307 |
+
buf = []
|
308 |
+
if len(buf) > 0:
|
309 |
+
yield buf
|
310 |
+
|
311 |
+
|
312 |
+
def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
|
313 |
+
""" Dynamic batch the data until the total frames in batch
|
314 |
+
reach `max_frames_in_batch`
|
315 |
+
|
316 |
+
Args:
|
317 |
+
data: Iterable[{key, feat, label}]
|
318 |
+
max_frames_in_batch: max_frames in one batch
|
319 |
+
|
320 |
+
Returns:
|
321 |
+
Iterable[List[{key, feat, label}]]
|
322 |
+
"""
|
323 |
+
buf = []
|
324 |
+
longest_frames = 0
|
325 |
+
for sample in data:
|
326 |
+
assert 'speech_feat' in sample
|
327 |
+
assert isinstance(sample['speech_feat'], torch.Tensor)
|
328 |
+
new_sample_frames = sample['speech_feat'].size(0)
|
329 |
+
longest_frames = max(longest_frames, new_sample_frames)
|
330 |
+
frames_after_padding = longest_frames * (len(buf) + 1)
|
331 |
+
if frames_after_padding > max_frames_in_batch:
|
332 |
+
yield buf
|
333 |
+
buf = [sample]
|
334 |
+
longest_frames = new_sample_frames
|
335 |
+
else:
|
336 |
+
buf.append(sample)
|
337 |
+
if len(buf) > 0:
|
338 |
+
yield buf
|
339 |
+
|
340 |
+
|
341 |
+
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
|
342 |
+
""" Wrapper for static/dynamic batch
|
343 |
+
"""
|
344 |
+
if mode == 'inference':
|
345 |
+
return static_batch(data, 1)
|
346 |
+
else:
|
347 |
+
if batch_type == 'static':
|
348 |
+
return static_batch(data, batch_size)
|
349 |
+
elif batch_type == 'dynamic':
|
350 |
+
return dynamic_batch(data, max_frames_in_batch)
|
351 |
+
else:
|
352 |
+
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
353 |
+
|
354 |
+
|
355 |
+
def padding(data, use_spk_embedding, mode='train', gan=False):
|
356 |
+
""" Padding the data into training data
|
357 |
+
|
358 |
+
Args:
|
359 |
+
data: Iterable[List[{key, feat, label}]]
|
360 |
+
|
361 |
+
Returns:
|
362 |
+
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
363 |
+
"""
|
364 |
+
for sample in data:
|
365 |
+
assert isinstance(sample, list)
|
366 |
+
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
|
367 |
+
dtype=torch.int32)
|
368 |
+
order = torch.argsort(speech_feat_len, descending=True)
|
369 |
+
|
370 |
+
utts = [sample[i]['utt'] for i in order]
|
371 |
+
speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
|
372 |
+
speech_len = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
|
373 |
+
speech = pad_sequence(speech, batch_first=True, padding_value=0)
|
374 |
+
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
375 |
+
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
376 |
+
speech_token = pad_sequence(speech_token,
|
377 |
+
batch_first=True,
|
378 |
+
padding_value=0)
|
379 |
+
speech_feat = [sample[i]['speech_feat'] for i in order]
|
380 |
+
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
|
381 |
+
speech_feat = pad_sequence(speech_feat,
|
382 |
+
batch_first=True,
|
383 |
+
padding_value=0)
|
384 |
+
text = [sample[i]['text'] for i in order]
|
385 |
+
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
|
386 |
+
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
|
387 |
+
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
|
388 |
+
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
|
389 |
+
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
390 |
+
batch = {
|
391 |
+
"utts": utts,
|
392 |
+
"speech": speech,
|
393 |
+
"speech_len": speech_len,
|
394 |
+
"speech_token": speech_token,
|
395 |
+
"speech_token_len": speech_token_len,
|
396 |
+
"speech_feat": speech_feat,
|
397 |
+
"speech_feat_len": speech_feat_len,
|
398 |
+
"text": text,
|
399 |
+
"text_token": text_token,
|
400 |
+
"text_token_len": text_token_len,
|
401 |
+
"utt_embedding": utt_embedding,
|
402 |
+
"spk_embedding": spk_embedding,
|
403 |
+
}
|
404 |
+
if gan is True:
|
405 |
+
# in gan train, we need pitch_feat
|
406 |
+
pitch_feat = [sample[i]['pitch_feat'] for i in order]
|
407 |
+
pitch_feat_len = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
|
408 |
+
pitch_feat = pad_sequence(pitch_feat,
|
409 |
+
batch_first=True,
|
410 |
+
padding_value=0)
|
411 |
+
batch["pitch_feat"] = pitch_feat
|
412 |
+
batch["pitch_feat_len"] = pitch_feat_len
|
413 |
+
else:
|
414 |
+
# only gan train needs speech, delete it to save memory
|
415 |
+
del batch["speech"]
|
416 |
+
del batch["speech_len"]
|
417 |
+
if mode == 'inference':
|
418 |
+
tts_text = [sample[i]['tts_text'] for i in order]
|
419 |
+
tts_index = [sample[i]['tts_index'] for i in order]
|
420 |
+
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
|
421 |
+
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
|
422 |
+
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
|
423 |
+
batch.update({'tts_text': tts_text,
|
424 |
+
'tts_index': tts_index,
|
425 |
+
'tts_text_token': tts_text_token,
|
426 |
+
'tts_text_token_len': tts_text_token_len})
|
427 |
+
if use_spk_embedding is True:
|
428 |
+
batch["embedding"] = batch["spk_embedding"]
|
429 |
+
else:
|
430 |
+
batch["embedding"] = batch["utt_embedding"]
|
431 |
+
yield batch
|
cosyvoice/flow/decoder.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from einops import pack, rearrange, repeat
|
18 |
+
from cosyvoice.utils.common import mask_to_bias
|
19 |
+
from cosyvoice.utils.mask import add_optional_chunk_mask
|
20 |
+
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
21 |
+
from matcha.models.components.transformer import BasicTransformerBlock
|
22 |
+
|
23 |
+
|
24 |
+
class Transpose(torch.nn.Module):
|
25 |
+
def __init__(self, dim0: int, dim1: int):
|
26 |
+
super().__init__()
|
27 |
+
self.dim0 = dim0
|
28 |
+
self.dim1 = dim1
|
29 |
+
|
30 |
+
def forward(self, x: torch.Tensor):
|
31 |
+
x = torch.transpose(x, self.dim0, self.dim1)
|
32 |
+
return x
|
33 |
+
|
34 |
+
|
35 |
+
class CausalBlock1D(Block1D):
|
36 |
+
def __init__(self, dim: int, dim_out: int):
|
37 |
+
super(CausalBlock1D, self).__init__(dim, dim_out)
|
38 |
+
self.block = torch.nn.Sequential(
|
39 |
+
CausalConv1d(dim, dim_out, 3),
|
40 |
+
Transpose(1, 2),
|
41 |
+
nn.LayerNorm(dim_out),
|
42 |
+
Transpose(1, 2),
|
43 |
+
nn.Mish(),
|
44 |
+
)
|
45 |
+
|
46 |
+
def forward(self, x: torch.Tensor, mask: torch.Tensor):
|
47 |
+
output = self.block(x * mask)
|
48 |
+
return output * mask
|
49 |
+
|
50 |
+
|
51 |
+
class CausalResnetBlock1D(ResnetBlock1D):
|
52 |
+
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int=8):
|
53 |
+
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
|
54 |
+
self.block1 = CausalBlock1D(dim, dim_out)
|
55 |
+
self.block2 = CausalBlock1D(dim_out, dim_out)
|
56 |
+
|
57 |
+
|
58 |
+
class CausalConv1d(torch.nn.Conv1d):
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
in_channels: int,
|
62 |
+
out_channels: int,
|
63 |
+
kernel_size: int,
|
64 |
+
stride: int = 1,
|
65 |
+
dilation: int = 1,
|
66 |
+
groups: int = 1,
|
67 |
+
bias: bool = True,
|
68 |
+
padding_mode: str = 'zeros',
|
69 |
+
device=None,
|
70 |
+
dtype=None
|
71 |
+
) -> None:
|
72 |
+
super(CausalConv1d, self).__init__(in_channels, out_channels,
|
73 |
+
kernel_size, stride,
|
74 |
+
padding=0, dilation=dilation,
|
75 |
+
groups=groups, bias=bias,
|
76 |
+
padding_mode=padding_mode,
|
77 |
+
device=device, dtype=dtype
|
78 |
+
)
|
79 |
+
assert stride == 1
|
80 |
+
self.causal_padding = (kernel_size - 1, 0)
|
81 |
+
|
82 |
+
def forward(self, x: torch.Tensor):
|
83 |
+
x = F.pad(x, self.causal_padding)
|
84 |
+
x = super(CausalConv1d, self).forward(x)
|
85 |
+
return x
|
86 |
+
|
87 |
+
|
88 |
+
class ConditionalDecoder(nn.Module):
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
in_channels,
|
92 |
+
out_channels,
|
93 |
+
causal=False,
|
94 |
+
channels=(256, 256),
|
95 |
+
dropout=0.05,
|
96 |
+
attention_head_dim=64,
|
97 |
+
n_blocks=1,
|
98 |
+
num_mid_blocks=2,
|
99 |
+
num_heads=4,
|
100 |
+
act_fn="snake",
|
101 |
+
):
|
102 |
+
"""
|
103 |
+
This decoder requires an input with the same shape of the target. So, if your text content
|
104 |
+
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
105 |
+
"""
|
106 |
+
super().__init__()
|
107 |
+
channels = tuple(channels)
|
108 |
+
self.in_channels = in_channels
|
109 |
+
self.out_channels = out_channels
|
110 |
+
self.causal = causal
|
111 |
+
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
112 |
+
time_embed_dim = channels[0] * 4
|
113 |
+
self.time_mlp = TimestepEmbedding(
|
114 |
+
in_channels=in_channels,
|
115 |
+
time_embed_dim=time_embed_dim,
|
116 |
+
act_fn="silu",
|
117 |
+
)
|
118 |
+
self.down_blocks = nn.ModuleList([])
|
119 |
+
self.mid_blocks = nn.ModuleList([])
|
120 |
+
self.up_blocks = nn.ModuleList([])
|
121 |
+
|
122 |
+
output_channel = in_channels
|
123 |
+
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
124 |
+
input_channel = output_channel
|
125 |
+
output_channel = channels[i]
|
126 |
+
is_last = i == len(channels) - 1
|
127 |
+
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
128 |
+
transformer_blocks = nn.ModuleList(
|
129 |
+
[
|
130 |
+
BasicTransformerBlock(
|
131 |
+
dim=output_channel,
|
132 |
+
num_attention_heads=num_heads,
|
133 |
+
attention_head_dim=attention_head_dim,
|
134 |
+
dropout=dropout,
|
135 |
+
activation_fn=act_fn,
|
136 |
+
)
|
137 |
+
for _ in range(n_blocks)
|
138 |
+
]
|
139 |
+
)
|
140 |
+
downsample = (
|
141 |
+
Downsample1D(output_channel) if not is_last else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
142 |
+
)
|
143 |
+
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
144 |
+
|
145 |
+
for _ in range(num_mid_blocks):
|
146 |
+
input_channel = channels[-1]
|
147 |
+
out_channels = channels[-1]
|
148 |
+
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
149 |
+
|
150 |
+
transformer_blocks = nn.ModuleList(
|
151 |
+
[
|
152 |
+
BasicTransformerBlock(
|
153 |
+
dim=output_channel,
|
154 |
+
num_attention_heads=num_heads,
|
155 |
+
attention_head_dim=attention_head_dim,
|
156 |
+
dropout=dropout,
|
157 |
+
activation_fn=act_fn,
|
158 |
+
)
|
159 |
+
for _ in range(n_blocks)
|
160 |
+
]
|
161 |
+
)
|
162 |
+
|
163 |
+
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
164 |
+
|
165 |
+
channels = channels[::-1] + (channels[0],)
|
166 |
+
for i in range(len(channels) - 1):
|
167 |
+
input_channel = channels[i] * 2
|
168 |
+
output_channel = channels[i + 1]
|
169 |
+
is_last = i == len(channels) - 2
|
170 |
+
resnet = CausalResnetBlock1D(
|
171 |
+
dim=input_channel,
|
172 |
+
dim_out=output_channel,
|
173 |
+
time_emb_dim=time_embed_dim,
|
174 |
+
) if self.causal else ResnetBlock1D(
|
175 |
+
dim=input_channel,
|
176 |
+
dim_out=output_channel,
|
177 |
+
time_emb_dim=time_embed_dim,
|
178 |
+
)
|
179 |
+
transformer_blocks = nn.ModuleList(
|
180 |
+
[
|
181 |
+
BasicTransformerBlock(
|
182 |
+
dim=output_channel,
|
183 |
+
num_attention_heads=num_heads,
|
184 |
+
attention_head_dim=attention_head_dim,
|
185 |
+
dropout=dropout,
|
186 |
+
activation_fn=act_fn,
|
187 |
+
)
|
188 |
+
for _ in range(n_blocks)
|
189 |
+
]
|
190 |
+
)
|
191 |
+
upsample = (
|
192 |
+
Upsample1D(output_channel, use_conv_transpose=True)
|
193 |
+
if not is_last
|
194 |
+
else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
195 |
+
)
|
196 |
+
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
197 |
+
self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1])
|
198 |
+
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
199 |
+
self.initialize_weights()
|
200 |
+
|
201 |
+
def initialize_weights(self):
|
202 |
+
for m in self.modules():
|
203 |
+
if isinstance(m, nn.Conv1d):
|
204 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
205 |
+
if m.bias is not None:
|
206 |
+
nn.init.constant_(m.bias, 0)
|
207 |
+
elif isinstance(m, nn.GroupNorm):
|
208 |
+
nn.init.constant_(m.weight, 1)
|
209 |
+
nn.init.constant_(m.bias, 0)
|
210 |
+
elif isinstance(m, nn.Linear):
|
211 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
212 |
+
if m.bias is not None:
|
213 |
+
nn.init.constant_(m.bias, 0)
|
214 |
+
|
215 |
+
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
216 |
+
"""Forward pass of the UNet1DConditional model.
|
217 |
+
|
218 |
+
Args:
|
219 |
+
x (torch.Tensor): shape (batch_size, in_channels, time)
|
220 |
+
mask (_type_): shape (batch_size, 1, time)
|
221 |
+
t (_type_): shape (batch_size)
|
222 |
+
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
223 |
+
cond (_type_, optional): placeholder for future use. Defaults to None.
|
224 |
+
|
225 |
+
Raises:
|
226 |
+
ValueError: _description_
|
227 |
+
ValueError: _description_
|
228 |
+
|
229 |
+
Returns:
|
230 |
+
_type_: _description_
|
231 |
+
"""
|
232 |
+
|
233 |
+
t = self.time_embeddings(t).to(t.dtype)
|
234 |
+
t = self.time_mlp(t)
|
235 |
+
|
236 |
+
x = pack([x, mu], "b * t")[0]
|
237 |
+
|
238 |
+
if spks is not None:
|
239 |
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
240 |
+
x = pack([x, spks], "b * t")[0]
|
241 |
+
if cond is not None:
|
242 |
+
x = pack([x, cond], "b * t")[0]
|
243 |
+
|
244 |
+
hiddens = []
|
245 |
+
masks = [mask]
|
246 |
+
for resnet, transformer_blocks, downsample in self.down_blocks:
|
247 |
+
mask_down = masks[-1]
|
248 |
+
x = resnet(x, mask_down, t)
|
249 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
250 |
+
# attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
251 |
+
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
|
252 |
+
attn_mask = mask_to_bias(attn_mask==1, x.dtype)
|
253 |
+
for transformer_block in transformer_blocks:
|
254 |
+
x = transformer_block(
|
255 |
+
hidden_states=x,
|
256 |
+
attention_mask=attn_mask,
|
257 |
+
timestep=t,
|
258 |
+
)
|
259 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
260 |
+
hiddens.append(x) # Save hidden states for skip connections
|
261 |
+
x = downsample(x * mask_down)
|
262 |
+
masks.append(mask_down[:, :, ::2])
|
263 |
+
masks = masks[:-1]
|
264 |
+
mask_mid = masks[-1]
|
265 |
+
|
266 |
+
for resnet, transformer_blocks in self.mid_blocks:
|
267 |
+
x = resnet(x, mask_mid, t)
|
268 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
269 |
+
# attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
270 |
+
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
|
271 |
+
attn_mask = mask_to_bias(attn_mask==1, x.dtype)
|
272 |
+
for transformer_block in transformer_blocks:
|
273 |
+
x = transformer_block(
|
274 |
+
hidden_states=x,
|
275 |
+
attention_mask=attn_mask,
|
276 |
+
timestep=t,
|
277 |
+
)
|
278 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
279 |
+
|
280 |
+
for resnet, transformer_blocks, upsample in self.up_blocks:
|
281 |
+
mask_up = masks.pop()
|
282 |
+
skip = hiddens.pop()
|
283 |
+
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
284 |
+
x = resnet(x, mask_up, t)
|
285 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
286 |
+
# attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
287 |
+
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
|
288 |
+
attn_mask = mask_to_bias(attn_mask==1, x.dtype)
|
289 |
+
for transformer_block in transformer_blocks:
|
290 |
+
x = transformer_block(
|
291 |
+
hidden_states=x,
|
292 |
+
attention_mask=attn_mask,
|
293 |
+
timestep=t,
|
294 |
+
)
|
295 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
296 |
+
x = upsample(x * mask_up)
|
297 |
+
x = self.final_block(x, mask_up)
|
298 |
+
output = self.final_proj(x * mask_up)
|
299 |
+
return output * mask
|
cosyvoice/flow/flow.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import logging
|
15 |
+
import random
|
16 |
+
from typing import Dict, Optional
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from torch.nn import functional as F
|
20 |
+
from omegaconf import DictConfig
|
21 |
+
from cosyvoice.utils.mask import make_pad_mask
|
22 |
+
|
23 |
+
|
24 |
+
class MaskedDiffWithXvec(torch.nn.Module):
|
25 |
+
def __init__(self,
|
26 |
+
input_size: int = 512,
|
27 |
+
output_size: int = 80,
|
28 |
+
spk_embed_dim: int = 192,
|
29 |
+
output_type: str = "mel",
|
30 |
+
vocab_size: int = 4096,
|
31 |
+
input_frame_rate: int = 50,
|
32 |
+
only_mask_loss: bool = True,
|
33 |
+
encoder: torch.nn.Module = None,
|
34 |
+
length_regulator: torch.nn.Module = None,
|
35 |
+
decoder: torch.nn.Module = None,
|
36 |
+
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
37 |
+
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
38 |
+
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
39 |
+
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
40 |
+
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
41 |
+
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
42 |
+
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
43 |
+
super().__init__()
|
44 |
+
self.input_size = input_size
|
45 |
+
self.output_size = output_size
|
46 |
+
self.decoder_conf = decoder_conf
|
47 |
+
self.mel_feat_conf = mel_feat_conf
|
48 |
+
self.vocab_size = vocab_size
|
49 |
+
self.output_type = output_type
|
50 |
+
self.input_frame_rate = input_frame_rate
|
51 |
+
logging.info(f"input frame rate={self.input_frame_rate}")
|
52 |
+
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
53 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
54 |
+
self.encoder = encoder
|
55 |
+
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
56 |
+
self.decoder = decoder
|
57 |
+
self.length_regulator = length_regulator
|
58 |
+
self.only_mask_loss = only_mask_loss
|
59 |
+
|
60 |
+
def forward(
|
61 |
+
self,
|
62 |
+
batch: dict,
|
63 |
+
device: torch.device,
|
64 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
65 |
+
token = batch['speech_token'].to(device)
|
66 |
+
token_len = batch['speech_token_len'].to(device)
|
67 |
+
feat = batch['speech_feat'].to(device)
|
68 |
+
feat_len = batch['speech_feat_len'].to(device)
|
69 |
+
embedding = batch['embedding'].to(device)
|
70 |
+
|
71 |
+
# xvec projection
|
72 |
+
embedding = F.normalize(embedding, dim=1)
|
73 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
74 |
+
|
75 |
+
# concat text and prompt_text
|
76 |
+
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
77 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
78 |
+
|
79 |
+
# text encode
|
80 |
+
h, h_lengths = self.encoder(token, token_len)
|
81 |
+
h = self.encoder_proj(h)
|
82 |
+
h, h_lengths = self.length_regulator(h, feat_len)
|
83 |
+
|
84 |
+
# get conditions
|
85 |
+
conds = torch.zeros(feat.shape, device=token.device)
|
86 |
+
for i, j in enumerate(feat_len):
|
87 |
+
if random.random() < 0.5:
|
88 |
+
continue
|
89 |
+
index = random.randint(0, int(0.3 * j))
|
90 |
+
conds[i, :index] = feat[i, :index]
|
91 |
+
conds = conds.transpose(1, 2)
|
92 |
+
|
93 |
+
mask = (~make_pad_mask(feat_len)).to(h)
|
94 |
+
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
95 |
+
loss, _ = self.decoder.compute_loss(
|
96 |
+
feat.transpose(1, 2).contiguous(),
|
97 |
+
mask.unsqueeze(1),
|
98 |
+
h.transpose(1, 2).contiguous(),
|
99 |
+
embedding,
|
100 |
+
cond=conds
|
101 |
+
)
|
102 |
+
return {'loss': loss}
|
103 |
+
|
104 |
+
@torch.inference_mode()
|
105 |
+
def inference(self,
|
106 |
+
token,
|
107 |
+
token_len,
|
108 |
+
prompt_token,
|
109 |
+
prompt_token_len,
|
110 |
+
prompt_feat,
|
111 |
+
prompt_feat_len,
|
112 |
+
embedding,
|
113 |
+
flow_cache):
|
114 |
+
assert token.shape[0] == 1
|
115 |
+
# xvec projection
|
116 |
+
embedding = F.normalize(embedding, dim=1)
|
117 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
118 |
+
|
119 |
+
# concat text and prompt_text
|
120 |
+
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
121 |
+
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
122 |
+
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
123 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
124 |
+
|
125 |
+
# text encode
|
126 |
+
h, h_lengths = self.encoder(token, token_len)
|
127 |
+
h = self.encoder_proj(h)
|
128 |
+
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
|
129 |
+
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate)
|
130 |
+
|
131 |
+
# get conditions
|
132 |
+
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device)
|
133 |
+
conds[:, :mel_len1] = prompt_feat
|
134 |
+
conds = conds.transpose(1, 2)
|
135 |
+
|
136 |
+
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
137 |
+
feat, flow_cache = self.decoder(
|
138 |
+
mu=h.transpose(1, 2).contiguous(),
|
139 |
+
mask=mask.unsqueeze(1),
|
140 |
+
spks=embedding,
|
141 |
+
cond=conds,
|
142 |
+
n_timesteps=10,
|
143 |
+
prompt_len=mel_len1,
|
144 |
+
flow_cache=flow_cache
|
145 |
+
)
|
146 |
+
feat = feat[:, :, mel_len1:]
|
147 |
+
assert feat.shape[2] == mel_len2
|
148 |
+
return feat, flow_cache
|
149 |
+
|
150 |
+
|
151 |
+
class CausalMaskedDiffWithXvec(torch.nn.Module):
|
152 |
+
def __init__(self,
|
153 |
+
input_size: int = 512,
|
154 |
+
output_size: int = 80,
|
155 |
+
spk_embed_dim: int = 192,
|
156 |
+
output_type: str = "mel",
|
157 |
+
vocab_size: int = 4096,
|
158 |
+
input_frame_rate: int = 50,
|
159 |
+
only_mask_loss: bool = True,
|
160 |
+
token_mel_ratio: int = 2,
|
161 |
+
pre_lookahead_len: int = 3,
|
162 |
+
encoder: torch.nn.Module = None,
|
163 |
+
decoder: torch.nn.Module = None,
|
164 |
+
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
165 |
+
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
166 |
+
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
167 |
+
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
168 |
+
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
169 |
+
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
170 |
+
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
171 |
+
super().__init__()
|
172 |
+
self.input_size = input_size
|
173 |
+
self.output_size = output_size
|
174 |
+
self.decoder_conf = decoder_conf
|
175 |
+
self.mel_feat_conf = mel_feat_conf
|
176 |
+
self.vocab_size = vocab_size
|
177 |
+
self.output_type = output_type
|
178 |
+
self.input_frame_rate = input_frame_rate
|
179 |
+
logging.info(f"input frame rate={self.input_frame_rate}")
|
180 |
+
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
181 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
182 |
+
self.encoder = encoder
|
183 |
+
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
184 |
+
self.decoder = decoder
|
185 |
+
self.only_mask_loss = only_mask_loss
|
186 |
+
self.token_mel_ratio = token_mel_ratio
|
187 |
+
self.pre_lookahead_len = pre_lookahead_len
|
188 |
+
|
189 |
+
@torch.inference_mode()
|
190 |
+
def inference(self,
|
191 |
+
token,
|
192 |
+
token_len,
|
193 |
+
prompt_token,
|
194 |
+
prompt_token_len,
|
195 |
+
prompt_feat,
|
196 |
+
prompt_feat_len,
|
197 |
+
embedding,
|
198 |
+
finalize):
|
199 |
+
assert token.shape[0] == 1
|
200 |
+
# xvec projection
|
201 |
+
embedding = F.normalize(embedding, dim=1)
|
202 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
203 |
+
|
204 |
+
# concat text and prompt_text
|
205 |
+
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
206 |
+
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
207 |
+
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
208 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
209 |
+
|
210 |
+
# text encode
|
211 |
+
h, h_lengths = self.encoder(token, token_len)
|
212 |
+
if finalize is False:
|
213 |
+
h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
|
214 |
+
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
215 |
+
h = self.encoder_proj(h)
|
216 |
+
|
217 |
+
# get conditions
|
218 |
+
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device)
|
219 |
+
conds[:, :mel_len1] = prompt_feat
|
220 |
+
conds = conds.transpose(1, 2)
|
221 |
+
|
222 |
+
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
223 |
+
feat, _ = self.decoder(
|
224 |
+
mu=h.transpose(1, 2).contiguous(),
|
225 |
+
mask=mask.unsqueeze(1),
|
226 |
+
spks=embedding,
|
227 |
+
cond=conds,
|
228 |
+
n_timesteps=10
|
229 |
+
)
|
230 |
+
feat = feat[:, :, mel_len1:]
|
231 |
+
assert feat.shape[2] == mel_len2
|
232 |
+
return feat, None
|
cosyvoice/flow/flow_matching.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import onnxruntime
|
15 |
+
import torch
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from matcha.models.components.flow_matching import BASECFM
|
18 |
+
|
19 |
+
|
20 |
+
class ConditionalCFM(BASECFM):
|
21 |
+
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
22 |
+
super().__init__(
|
23 |
+
n_feats=in_channels,
|
24 |
+
cfm_params=cfm_params,
|
25 |
+
n_spks=n_spks,
|
26 |
+
spk_emb_dim=spk_emb_dim,
|
27 |
+
)
|
28 |
+
self.t_scheduler = cfm_params.t_scheduler
|
29 |
+
self.training_cfg_rate = cfm_params.training_cfg_rate
|
30 |
+
self.inference_cfg_rate = cfm_params.inference_cfg_rate
|
31 |
+
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
32 |
+
# Just change the architecture of the estimator here
|
33 |
+
self.estimator = estimator
|
34 |
+
|
35 |
+
@torch.inference_mode()
|
36 |
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
|
37 |
+
"""Forward diffusion
|
38 |
+
|
39 |
+
Args:
|
40 |
+
mu (torch.Tensor): output of encoder
|
41 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
42 |
+
mask (torch.Tensor): output_mask
|
43 |
+
shape: (batch_size, 1, mel_timesteps)
|
44 |
+
n_timesteps (int): number of diffusion steps
|
45 |
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
46 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
47 |
+
shape: (batch_size, spk_emb_dim)
|
48 |
+
cond: Not used but kept for future purposes
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
sample: generated mel-spectrogram
|
52 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
53 |
+
"""
|
54 |
+
|
55 |
+
z = torch.randn_like(mu) * temperature
|
56 |
+
cache_size = flow_cache.shape[2]
|
57 |
+
# fix prompt and overlap part mu and z
|
58 |
+
if cache_size != 0:
|
59 |
+
z[:, :, :cache_size] = flow_cache[:, :, :, 0]
|
60 |
+
mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
|
61 |
+
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
|
62 |
+
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
|
63 |
+
flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
|
64 |
+
|
65 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
66 |
+
if self.t_scheduler == 'cosine':
|
67 |
+
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
68 |
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
|
69 |
+
|
70 |
+
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
71 |
+
"""
|
72 |
+
Fixed euler solver for ODEs.
|
73 |
+
Args:
|
74 |
+
x (torch.Tensor): random noise
|
75 |
+
t_span (torch.Tensor): n_timesteps interpolated
|
76 |
+
shape: (n_timesteps + 1,)
|
77 |
+
mu (torch.Tensor): output of encoder
|
78 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
79 |
+
mask (torch.Tensor): output_mask
|
80 |
+
shape: (batch_size, 1, mel_timesteps)
|
81 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
82 |
+
shape: (batch_size, spk_emb_dim)
|
83 |
+
cond: Not used but kept for future purposes
|
84 |
+
"""
|
85 |
+
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
86 |
+
t = t.unsqueeze(dim=0)
|
87 |
+
|
88 |
+
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
89 |
+
# Or in future might add like a return_all_steps flag
|
90 |
+
sol = []
|
91 |
+
|
92 |
+
if self.inference_cfg_rate > 0:
|
93 |
+
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
|
94 |
+
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
95 |
+
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
|
96 |
+
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
97 |
+
t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
|
98 |
+
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
|
99 |
+
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
100 |
+
else:
|
101 |
+
x_in, mask_in, mu_in, t_in, spks_in, cond_in = x, mask, mu, t, spks, cond
|
102 |
+
for step in range(1, len(t_span)):
|
103 |
+
# Classifier-Free Guidance inference introduced in VoiceBox
|
104 |
+
if self.inference_cfg_rate > 0:
|
105 |
+
x_in[:] = x
|
106 |
+
mask_in[:] = mask
|
107 |
+
mu_in[0] = mu
|
108 |
+
t_in[:] = t.unsqueeze(0)
|
109 |
+
spks_in[0] = spks
|
110 |
+
cond_in[0] = cond
|
111 |
+
else:
|
112 |
+
x_in, mask_in, mu_in, t_in, spks_in, cond_in = x, mask, mu, t, spks, cond
|
113 |
+
dphi_dt = self.forward_estimator(
|
114 |
+
x_in, mask_in,
|
115 |
+
mu_in, t_in,
|
116 |
+
spks_in,
|
117 |
+
cond_in
|
118 |
+
)
|
119 |
+
if self.inference_cfg_rate > 0:
|
120 |
+
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
|
121 |
+
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
|
122 |
+
x = x + dt * dphi_dt
|
123 |
+
t = t + dt
|
124 |
+
sol.append(x)
|
125 |
+
if step < len(t_span) - 1:
|
126 |
+
dt = t_span[step + 1] - t
|
127 |
+
|
128 |
+
return sol[-1].float()
|
129 |
+
|
130 |
+
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
131 |
+
if isinstance(self.estimator, torch.nn.Module):
|
132 |
+
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
133 |
+
elif isinstance(self.estimator, onnxruntime.InferenceSession):
|
134 |
+
ort_inputs = {
|
135 |
+
'x': x.cpu().numpy(),
|
136 |
+
'mask': mask.cpu().numpy(),
|
137 |
+
'mu': mu.cpu().numpy(),
|
138 |
+
't': t.cpu().numpy(),
|
139 |
+
'spks': spks.cpu().numpy(),
|
140 |
+
'cond': cond.cpu().numpy()
|
141 |
+
}
|
142 |
+
output = self.estimator.run(None, ort_inputs)[0]
|
143 |
+
return torch.tensor(output, dtype=x.dtype, device=x.device)
|
144 |
+
else:
|
145 |
+
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
|
146 |
+
self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
147 |
+
self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
148 |
+
self.estimator.set_input_shape('t', (2,))
|
149 |
+
self.estimator.set_input_shape('spks', (2, 80))
|
150 |
+
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
151 |
+
# run trt engine
|
152 |
+
self.estimator.execute_v2([x.contiguous().data_ptr(),
|
153 |
+
mask.contiguous().data_ptr(),
|
154 |
+
mu.contiguous().data_ptr(),
|
155 |
+
t.contiguous().data_ptr(),
|
156 |
+
spks.contiguous().data_ptr(),
|
157 |
+
cond.contiguous().data_ptr(),
|
158 |
+
x.data_ptr()])
|
159 |
+
return x
|
160 |
+
|
161 |
+
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
162 |
+
"""Computes diffusion loss
|
163 |
+
|
164 |
+
Args:
|
165 |
+
x1 (torch.Tensor): Target
|
166 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
167 |
+
mask (torch.Tensor): target mask
|
168 |
+
shape: (batch_size, 1, mel_timesteps)
|
169 |
+
mu (torch.Tensor): output of encoder
|
170 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
171 |
+
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
172 |
+
shape: (batch_size, spk_emb_dim)
|
173 |
+
|
174 |
+
Returns:
|
175 |
+
loss: conditional flow matching loss
|
176 |
+
y: conditional flow
|
177 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
178 |
+
"""
|
179 |
+
b, _, t = mu.shape
|
180 |
+
|
181 |
+
# random timestep
|
182 |
+
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
|
183 |
+
if self.t_scheduler == 'cosine':
|
184 |
+
t = 1 - torch.cos(t * 0.5 * torch.pi)
|
185 |
+
# sample noise p(x_0)
|
186 |
+
z = torch.randn_like(x1)
|
187 |
+
|
188 |
+
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
189 |
+
u = x1 - (1 - self.sigma_min) * z
|
190 |
+
|
191 |
+
# during training, we randomly drop condition to trade off mode coverage and sample fidelity
|
192 |
+
if self.training_cfg_rate > 0:
|
193 |
+
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
|
194 |
+
mu = mu * cfg_mask.view(-1, 1, 1)
|
195 |
+
spks = spks * cfg_mask.view(-1, 1)
|
196 |
+
cond = cond * cfg_mask.view(-1, 1, 1)
|
197 |
+
|
198 |
+
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
199 |
+
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
200 |
+
return loss, y
|
201 |
+
|
202 |
+
|
203 |
+
class CausalConditionalCFM(ConditionalCFM):
|
204 |
+
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
205 |
+
super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
|
206 |
+
self.rand_noise = torch.randn([1, 80, 50 * 300])
|
207 |
+
|
208 |
+
@torch.inference_mode()
|
209 |
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
210 |
+
"""Forward diffusion
|
211 |
+
|
212 |
+
Args:
|
213 |
+
mu (torch.Tensor): output of encoder
|
214 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
215 |
+
mask (torch.Tensor): output_mask
|
216 |
+
shape: (batch_size, 1, mel_timesteps)
|
217 |
+
n_timesteps (int): number of diffusion steps
|
218 |
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
219 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
220 |
+
shape: (batch_size, spk_emb_dim)
|
221 |
+
cond: Not used but kept for future purposes
|
222 |
+
|
223 |
+
Returns:
|
224 |
+
sample: generated mel-spectrogram
|
225 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
226 |
+
"""
|
227 |
+
|
228 |
+
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device) * temperature
|
229 |
+
if self.fp16 is True:
|
230 |
+
z = z.half()
|
231 |
+
# fix prompt and overlap part mu and z
|
232 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
233 |
+
if self.t_scheduler == 'cosine':
|
234 |
+
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
235 |
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
|
cosyvoice/flow/length_regulator.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Tuple
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch
|
17 |
+
from torch.nn import functional as F
|
18 |
+
from cosyvoice.utils.mask import make_pad_mask
|
19 |
+
|
20 |
+
|
21 |
+
class InterpolateRegulator(nn.Module):
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
channels: int,
|
25 |
+
sampling_ratios: Tuple,
|
26 |
+
out_channels: int = None,
|
27 |
+
groups: int = 1,
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.sampling_ratios = sampling_ratios
|
31 |
+
out_channels = out_channels or channels
|
32 |
+
model = nn.ModuleList([])
|
33 |
+
if len(sampling_ratios) > 0:
|
34 |
+
for _ in sampling_ratios:
|
35 |
+
module = nn.Conv1d(channels, channels, 3, 1, 1)
|
36 |
+
norm = nn.GroupNorm(groups, channels)
|
37 |
+
act = nn.Mish()
|
38 |
+
model.extend([module, norm, act])
|
39 |
+
model.append(
|
40 |
+
nn.Conv1d(channels, out_channels, 1, 1)
|
41 |
+
)
|
42 |
+
self.model = nn.Sequential(*model)
|
43 |
+
|
44 |
+
def forward(self, x, ylens=None):
|
45 |
+
# x in (B, T, D)
|
46 |
+
mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
|
47 |
+
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='linear')
|
48 |
+
out = self.model(x).transpose(1, 2).contiguous()
|
49 |
+
olens = ylens
|
50 |
+
return out * mask, olens
|
51 |
+
|
52 |
+
def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
|
53 |
+
# in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
|
54 |
+
# x in (B, T, D)
|
55 |
+
if x2.shape[1] > 40:
|
56 |
+
x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
57 |
+
x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - int(20 / input_frame_rate * 22050 / 256) * 2,
|
58 |
+
mode='linear')
|
59 |
+
x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
60 |
+
x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2)
|
61 |
+
else:
|
62 |
+
x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear')
|
63 |
+
if x1.shape[1] != 0:
|
64 |
+
x1 = F.interpolate(x1.transpose(1, 2).contiguous(), size=mel_len1, mode='linear')
|
65 |
+
x = torch.concat([x1, x2], dim=2)
|
66 |
+
else:
|
67 |
+
x = x2
|
68 |
+
out = self.model(x).transpose(1, 2).contiguous()
|
69 |
+
return out, mel_len1 + mel_len2
|
cosyvoice/hifigan/discriminator.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn.utils import weight_norm
|
4 |
+
from typing import List, Optional, Tuple
|
5 |
+
from einops import rearrange
|
6 |
+
from torchaudio.transforms import Spectrogram
|
7 |
+
|
8 |
+
|
9 |
+
class MultipleDiscriminator(nn.Module):
|
10 |
+
def __init__(
|
11 |
+
self, mpd: nn.Module, mrd: nn.Module
|
12 |
+
):
|
13 |
+
super().__init__()
|
14 |
+
self.mpd = mpd
|
15 |
+
self.mrd = mrd
|
16 |
+
|
17 |
+
def forward(self, y: torch.Tensor, y_hat: torch.Tensor):
|
18 |
+
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], []
|
19 |
+
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mpd(y.unsqueeze(dim=1), y_hat.unsqueeze(dim=1))
|
20 |
+
y_d_rs += this_y_d_rs
|
21 |
+
y_d_gs += this_y_d_gs
|
22 |
+
fmap_rs += this_fmap_rs
|
23 |
+
fmap_gs += this_fmap_gs
|
24 |
+
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mrd(y, y_hat)
|
25 |
+
y_d_rs += this_y_d_rs
|
26 |
+
y_d_gs += this_y_d_gs
|
27 |
+
fmap_rs += this_fmap_rs
|
28 |
+
fmap_gs += this_fmap_gs
|
29 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
30 |
+
|
31 |
+
|
32 |
+
class MultiResolutionDiscriminator(nn.Module):
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
|
36 |
+
num_embeddings: Optional[int] = None,
|
37 |
+
):
|
38 |
+
"""
|
39 |
+
Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
|
40 |
+
Additionally, it allows incorporating conditional information with a learned embeddings table.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
|
44 |
+
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
|
45 |
+
Defaults to None.
|
46 |
+
"""
|
47 |
+
|
48 |
+
super().__init__()
|
49 |
+
self.discriminators = nn.ModuleList(
|
50 |
+
[DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes]
|
51 |
+
)
|
52 |
+
|
53 |
+
def forward(
|
54 |
+
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
|
55 |
+
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
56 |
+
y_d_rs = []
|
57 |
+
y_d_gs = []
|
58 |
+
fmap_rs = []
|
59 |
+
fmap_gs = []
|
60 |
+
|
61 |
+
for d in self.discriminators:
|
62 |
+
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
|
63 |
+
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
|
64 |
+
y_d_rs.append(y_d_r)
|
65 |
+
fmap_rs.append(fmap_r)
|
66 |
+
y_d_gs.append(y_d_g)
|
67 |
+
fmap_gs.append(fmap_g)
|
68 |
+
|
69 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
70 |
+
|
71 |
+
|
72 |
+
class DiscriminatorR(nn.Module):
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
window_length: int,
|
76 |
+
num_embeddings: Optional[int] = None,
|
77 |
+
channels: int = 32,
|
78 |
+
hop_factor: float = 0.25,
|
79 |
+
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
|
80 |
+
):
|
81 |
+
super().__init__()
|
82 |
+
self.window_length = window_length
|
83 |
+
self.hop_factor = hop_factor
|
84 |
+
self.spec_fn = Spectrogram(
|
85 |
+
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
|
86 |
+
)
|
87 |
+
n_fft = window_length // 2 + 1
|
88 |
+
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
89 |
+
self.bands = bands
|
90 |
+
convs = lambda: nn.ModuleList(
|
91 |
+
[
|
92 |
+
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
|
93 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
94 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
95 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
96 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
|
97 |
+
]
|
98 |
+
)
|
99 |
+
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
100 |
+
|
101 |
+
if num_embeddings is not None:
|
102 |
+
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
|
103 |
+
torch.nn.init.zeros_(self.emb.weight)
|
104 |
+
|
105 |
+
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
|
106 |
+
|
107 |
+
def spectrogram(self, x):
|
108 |
+
# Remove DC offset
|
109 |
+
x = x - x.mean(dim=-1, keepdims=True)
|
110 |
+
# Peak normalize the volume of input audio
|
111 |
+
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
112 |
+
x = self.spec_fn(x)
|
113 |
+
x = torch.view_as_real(x)
|
114 |
+
x = rearrange(x, "b f t c -> b c t f")
|
115 |
+
# Split into bands
|
116 |
+
x_bands = [x[..., b[0]: b[1]] for b in self.bands]
|
117 |
+
return x_bands
|
118 |
+
|
119 |
+
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
|
120 |
+
x_bands = self.spectrogram(x)
|
121 |
+
fmap = []
|
122 |
+
x = []
|
123 |
+
for band, stack in zip(x_bands, self.band_convs):
|
124 |
+
for i, layer in enumerate(stack):
|
125 |
+
band = layer(band)
|
126 |
+
band = torch.nn.functional.leaky_relu(band, 0.1)
|
127 |
+
if i > 0:
|
128 |
+
fmap.append(band)
|
129 |
+
x.append(band)
|
130 |
+
x = torch.cat(x, dim=-1)
|
131 |
+
if cond_embedding_id is not None:
|
132 |
+
emb = self.emb(cond_embedding_id)
|
133 |
+
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
|
134 |
+
else:
|
135 |
+
h = 0
|
136 |
+
x = self.conv_post(x)
|
137 |
+
fmap.append(x)
|
138 |
+
x += h
|
139 |
+
|
140 |
+
return x, fmap
|
cosyvoice/hifigan/f0_predictor.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from torch.nn.utils import weight_norm
|
17 |
+
|
18 |
+
|
19 |
+
class ConvRNNF0Predictor(nn.Module):
|
20 |
+
def __init__(self,
|
21 |
+
num_class: int = 1,
|
22 |
+
in_channels: int = 80,
|
23 |
+
cond_channels: int = 512
|
24 |
+
):
|
25 |
+
super().__init__()
|
26 |
+
|
27 |
+
self.num_class = num_class
|
28 |
+
self.condnet = nn.Sequential(
|
29 |
+
weight_norm(
|
30 |
+
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
|
31 |
+
),
|
32 |
+
nn.ELU(),
|
33 |
+
weight_norm(
|
34 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
35 |
+
),
|
36 |
+
nn.ELU(),
|
37 |
+
weight_norm(
|
38 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
39 |
+
),
|
40 |
+
nn.ELU(),
|
41 |
+
weight_norm(
|
42 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
43 |
+
),
|
44 |
+
nn.ELU(),
|
45 |
+
weight_norm(
|
46 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
47 |
+
),
|
48 |
+
nn.ELU(),
|
49 |
+
)
|
50 |
+
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
|
51 |
+
|
52 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
53 |
+
x = self.condnet(x)
|
54 |
+
x = x.transpose(1, 2)
|
55 |
+
return torch.abs(self.classifier(x).squeeze(-1))
|
cosyvoice/hifigan/generator.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""HIFI-GAN"""
|
16 |
+
|
17 |
+
from typing import Dict, Optional, List
|
18 |
+
import numpy as np
|
19 |
+
from scipy.signal import get_window
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from torch.nn import Conv1d
|
24 |
+
from torch.nn import ConvTranspose1d
|
25 |
+
from torch.nn.utils import remove_weight_norm
|
26 |
+
from torch.nn.utils import weight_norm
|
27 |
+
from torch.distributions.uniform import Uniform
|
28 |
+
|
29 |
+
from cosyvoice.transformer.activation import Snake
|
30 |
+
from cosyvoice.utils.common import get_padding
|
31 |
+
from cosyvoice.utils.common import init_weights
|
32 |
+
|
33 |
+
|
34 |
+
"""hifigan based generator implementation.
|
35 |
+
|
36 |
+
This code is modified from https://github.com/jik876/hifi-gan
|
37 |
+
,https://github.com/kan-bayashi/ParallelWaveGAN and
|
38 |
+
https://github.com/NVIDIA/BigVGAN
|
39 |
+
|
40 |
+
"""
|
41 |
+
|
42 |
+
|
43 |
+
class ResBlock(torch.nn.Module):
|
44 |
+
"""Residual block module in HiFiGAN/BigVGAN."""
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
channels: int = 512,
|
48 |
+
kernel_size: int = 3,
|
49 |
+
dilations: List[int] = [1, 3, 5],
|
50 |
+
):
|
51 |
+
super(ResBlock, self).__init__()
|
52 |
+
self.convs1 = nn.ModuleList()
|
53 |
+
self.convs2 = nn.ModuleList()
|
54 |
+
|
55 |
+
for dilation in dilations:
|
56 |
+
self.convs1.append(
|
57 |
+
weight_norm(
|
58 |
+
Conv1d(
|
59 |
+
channels,
|
60 |
+
channels,
|
61 |
+
kernel_size,
|
62 |
+
1,
|
63 |
+
dilation=dilation,
|
64 |
+
padding=get_padding(kernel_size, dilation)
|
65 |
+
)
|
66 |
+
)
|
67 |
+
)
|
68 |
+
self.convs2.append(
|
69 |
+
weight_norm(
|
70 |
+
Conv1d(
|
71 |
+
channels,
|
72 |
+
channels,
|
73 |
+
kernel_size,
|
74 |
+
1,
|
75 |
+
dilation=1,
|
76 |
+
padding=get_padding(kernel_size, 1)
|
77 |
+
)
|
78 |
+
)
|
79 |
+
)
|
80 |
+
self.convs1.apply(init_weights)
|
81 |
+
self.convs2.apply(init_weights)
|
82 |
+
self.activations1 = nn.ModuleList([
|
83 |
+
Snake(channels, alpha_logscale=False)
|
84 |
+
for _ in range(len(self.convs1))
|
85 |
+
])
|
86 |
+
self.activations2 = nn.ModuleList([
|
87 |
+
Snake(channels, alpha_logscale=False)
|
88 |
+
for _ in range(len(self.convs2))
|
89 |
+
])
|
90 |
+
|
91 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
92 |
+
for idx in range(len(self.convs1)):
|
93 |
+
xt = self.activations1[idx](x)
|
94 |
+
xt = self.convs1[idx](xt)
|
95 |
+
xt = self.activations2[idx](xt)
|
96 |
+
xt = self.convs2[idx](xt)
|
97 |
+
x = xt + x
|
98 |
+
return x
|
99 |
+
|
100 |
+
def remove_weight_norm(self):
|
101 |
+
for idx in range(len(self.convs1)):
|
102 |
+
remove_weight_norm(self.convs1[idx])
|
103 |
+
remove_weight_norm(self.convs2[idx])
|
104 |
+
|
105 |
+
|
106 |
+
class SineGen(torch.nn.Module):
|
107 |
+
""" Definition of sine generator
|
108 |
+
SineGen(samp_rate, harmonic_num = 0,
|
109 |
+
sine_amp = 0.1, noise_std = 0.003,
|
110 |
+
voiced_threshold = 0,
|
111 |
+
flag_for_pulse=False)
|
112 |
+
samp_rate: sampling rate in Hz
|
113 |
+
harmonic_num: number of harmonic overtones (default 0)
|
114 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
115 |
+
noise_std: std of Gaussian noise (default 0.003)
|
116 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
117 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
118 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
119 |
+
segment is always sin(np.pi) or cos(0)
|
120 |
+
"""
|
121 |
+
|
122 |
+
def __init__(self, samp_rate, harmonic_num=0,
|
123 |
+
sine_amp=0.1, noise_std=0.003,
|
124 |
+
voiced_threshold=0):
|
125 |
+
super(SineGen, self).__init__()
|
126 |
+
self.sine_amp = sine_amp
|
127 |
+
self.noise_std = noise_std
|
128 |
+
self.harmonic_num = harmonic_num
|
129 |
+
self.sampling_rate = samp_rate
|
130 |
+
self.voiced_threshold = voiced_threshold
|
131 |
+
|
132 |
+
def _f02uv(self, f0):
|
133 |
+
# generate uv signal
|
134 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
135 |
+
return uv
|
136 |
+
|
137 |
+
@torch.no_grad()
|
138 |
+
def forward(self, f0):
|
139 |
+
"""
|
140 |
+
:param f0: [B, 1, sample_len], Hz
|
141 |
+
:return: [B, 1, sample_len]
|
142 |
+
"""
|
143 |
+
|
144 |
+
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
|
145 |
+
for i in range(self.harmonic_num + 1):
|
146 |
+
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
|
147 |
+
|
148 |
+
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
|
149 |
+
u_dist = Uniform(low=-np.pi, high=np.pi)
|
150 |
+
phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
|
151 |
+
phase_vec[:, 0, :] = 0
|
152 |
+
|
153 |
+
# generate sine waveforms
|
154 |
+
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
|
155 |
+
|
156 |
+
# generate uv signal
|
157 |
+
uv = self._f02uv(f0)
|
158 |
+
|
159 |
+
# noise: for unvoiced should be similar to sine_amp
|
160 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
161 |
+
# . for voiced regions is self.noise_std
|
162 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
163 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
164 |
+
|
165 |
+
# first: set the unvoiced part to 0 by uv
|
166 |
+
# then: additive noise
|
167 |
+
sine_waves = sine_waves * uv + noise
|
168 |
+
return sine_waves, uv, noise
|
169 |
+
|
170 |
+
|
171 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
172 |
+
""" SourceModule for hn-nsf
|
173 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
174 |
+
add_noise_std=0.003, voiced_threshod=0)
|
175 |
+
sampling_rate: sampling_rate in Hz
|
176 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
177 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
178 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
179 |
+
note that amplitude of noise in unvoiced is decided
|
180 |
+
by sine_amp
|
181 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
182 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
183 |
+
F0_sampled (batchsize, length, 1)
|
184 |
+
Sine_source (batchsize, length, 1)
|
185 |
+
noise_source (batchsize, length 1)
|
186 |
+
uv (batchsize, length, 1)
|
187 |
+
"""
|
188 |
+
|
189 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
190 |
+
add_noise_std=0.003, voiced_threshod=0):
|
191 |
+
super(SourceModuleHnNSF, self).__init__()
|
192 |
+
|
193 |
+
self.sine_amp = sine_amp
|
194 |
+
self.noise_std = add_noise_std
|
195 |
+
|
196 |
+
# to produce sine waveforms
|
197 |
+
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
198 |
+
sine_amp, add_noise_std, voiced_threshod)
|
199 |
+
|
200 |
+
# to merge source harmonics into a single excitation
|
201 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
202 |
+
self.l_tanh = torch.nn.Tanh()
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
"""
|
206 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
207 |
+
F0_sampled (batchsize, length, 1)
|
208 |
+
Sine_source (batchsize, length, 1)
|
209 |
+
noise_source (batchsize, length 1)
|
210 |
+
"""
|
211 |
+
# source for harmonic branch
|
212 |
+
with torch.no_grad():
|
213 |
+
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
|
214 |
+
sine_wavs = sine_wavs.transpose(1, 2)
|
215 |
+
uv = uv.transpose(1, 2)
|
216 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
217 |
+
|
218 |
+
# source for noise branch, in the same shape as uv
|
219 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
220 |
+
return sine_merge, noise, uv
|
221 |
+
|
222 |
+
|
223 |
+
class HiFTGenerator(nn.Module):
|
224 |
+
"""
|
225 |
+
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
226 |
+
https://arxiv.org/abs/2309.09493
|
227 |
+
"""
|
228 |
+
def __init__(
|
229 |
+
self,
|
230 |
+
in_channels: int = 80,
|
231 |
+
base_channels: int = 512,
|
232 |
+
nb_harmonics: int = 8,
|
233 |
+
sampling_rate: int = 22050,
|
234 |
+
nsf_alpha: float = 0.1,
|
235 |
+
nsf_sigma: float = 0.003,
|
236 |
+
nsf_voiced_threshold: float = 10,
|
237 |
+
upsample_rates: List[int] = [8, 8],
|
238 |
+
upsample_kernel_sizes: List[int] = [16, 16],
|
239 |
+
istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
240 |
+
resblock_kernel_sizes: List[int] = [3, 7, 11],
|
241 |
+
resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
242 |
+
source_resblock_kernel_sizes: List[int] = [7, 11],
|
243 |
+
source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
|
244 |
+
lrelu_slope: float = 0.1,
|
245 |
+
audio_limit: float = 0.99,
|
246 |
+
f0_predictor: torch.nn.Module = None,
|
247 |
+
):
|
248 |
+
super(HiFTGenerator, self).__init__()
|
249 |
+
|
250 |
+
self.out_channels = 1
|
251 |
+
self.nb_harmonics = nb_harmonics
|
252 |
+
self.sampling_rate = sampling_rate
|
253 |
+
self.istft_params = istft_params
|
254 |
+
self.lrelu_slope = lrelu_slope
|
255 |
+
self.audio_limit = audio_limit
|
256 |
+
|
257 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
258 |
+
self.num_upsamples = len(upsample_rates)
|
259 |
+
self.m_source = SourceModuleHnNSF(
|
260 |
+
sampling_rate=sampling_rate,
|
261 |
+
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
262 |
+
harmonic_num=nb_harmonics,
|
263 |
+
sine_amp=nsf_alpha,
|
264 |
+
add_noise_std=nsf_sigma,
|
265 |
+
voiced_threshod=nsf_voiced_threshold)
|
266 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
|
267 |
+
|
268 |
+
self.conv_pre = weight_norm(
|
269 |
+
Conv1d(in_channels, base_channels, 7, 1, padding=3)
|
270 |
+
)
|
271 |
+
|
272 |
+
# Up
|
273 |
+
self.ups = nn.ModuleList()
|
274 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
275 |
+
self.ups.append(
|
276 |
+
weight_norm(
|
277 |
+
ConvTranspose1d(
|
278 |
+
base_channels // (2**i),
|
279 |
+
base_channels // (2**(i + 1)),
|
280 |
+
k,
|
281 |
+
u,
|
282 |
+
padding=(k - u) // 2,
|
283 |
+
)
|
284 |
+
)
|
285 |
+
)
|
286 |
+
|
287 |
+
# Down
|
288 |
+
self.source_downs = nn.ModuleList()
|
289 |
+
self.source_resblocks = nn.ModuleList()
|
290 |
+
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
291 |
+
downsample_cum_rates = np.cumprod(downsample_rates)
|
292 |
+
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
|
293 |
+
if u == 1:
|
294 |
+
self.source_downs.append(
|
295 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
self.source_downs.append(
|
299 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
|
300 |
+
)
|
301 |
+
|
302 |
+
self.source_resblocks.append(
|
303 |
+
ResBlock(base_channels // (2 ** (i + 1)), k, d)
|
304 |
+
)
|
305 |
+
|
306 |
+
self.resblocks = nn.ModuleList()
|
307 |
+
for i in range(len(self.ups)):
|
308 |
+
ch = base_channels // (2**(i + 1))
|
309 |
+
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
310 |
+
self.resblocks.append(ResBlock(ch, k, d))
|
311 |
+
|
312 |
+
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
313 |
+
self.ups.apply(init_weights)
|
314 |
+
self.conv_post.apply(init_weights)
|
315 |
+
self.reflection_pad = nn.ReflectionPad1d((1, 0))
|
316 |
+
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
317 |
+
self.f0_predictor = f0_predictor
|
318 |
+
|
319 |
+
def remove_weight_norm(self):
|
320 |
+
print('Removing weight norm...')
|
321 |
+
for l in self.ups:
|
322 |
+
remove_weight_norm(l)
|
323 |
+
for l in self.resblocks:
|
324 |
+
l.remove_weight_norm()
|
325 |
+
remove_weight_norm(self.conv_pre)
|
326 |
+
remove_weight_norm(self.conv_post)
|
327 |
+
self.m_source.remove_weight_norm()
|
328 |
+
for l in self.source_downs:
|
329 |
+
remove_weight_norm(l)
|
330 |
+
for l in self.source_resblocks:
|
331 |
+
l.remove_weight_norm()
|
332 |
+
|
333 |
+
def _stft(self, x):
|
334 |
+
spec = torch.stft(
|
335 |
+
x,
|
336 |
+
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
|
337 |
+
return_complex=True)
|
338 |
+
spec = torch.view_as_real(spec) # [B, F, TT, 2]
|
339 |
+
return spec[..., 0], spec[..., 1]
|
340 |
+
|
341 |
+
def _istft(self, magnitude, phase):
|
342 |
+
magnitude = torch.clip(magnitude, max=1e2)
|
343 |
+
real = magnitude * torch.cos(phase)
|
344 |
+
img = magnitude * torch.sin(phase)
|
345 |
+
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
|
346 |
+
self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
347 |
+
return inverse_transform
|
348 |
+
|
349 |
+
def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
350 |
+
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
351 |
+
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
352 |
+
|
353 |
+
x = self.conv_pre(x)
|
354 |
+
for i in range(self.num_upsamples):
|
355 |
+
x = F.leaky_relu(x, self.lrelu_slope)
|
356 |
+
x = self.ups[i](x)
|
357 |
+
|
358 |
+
if i == self.num_upsamples - 1:
|
359 |
+
x = self.reflection_pad(x)
|
360 |
+
|
361 |
+
# fusion
|
362 |
+
si = self.source_downs[i](s_stft)
|
363 |
+
si = self.source_resblocks[i](si)
|
364 |
+
x = x + si
|
365 |
+
|
366 |
+
xs = None
|
367 |
+
for j in range(self.num_kernels):
|
368 |
+
if xs is None:
|
369 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
370 |
+
else:
|
371 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
372 |
+
x = xs / self.num_kernels
|
373 |
+
|
374 |
+
x = F.leaky_relu(x)
|
375 |
+
x = self.conv_post(x)
|
376 |
+
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
|
377 |
+
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
|
378 |
+
|
379 |
+
x = self._istft(magnitude, phase)
|
380 |
+
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
381 |
+
return x
|
382 |
+
|
383 |
+
def forward(
|
384 |
+
self,
|
385 |
+
batch: dict,
|
386 |
+
device: torch.device,
|
387 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
388 |
+
speech_feat = batch['speech_feat'].transpose(1, 2).to(device)
|
389 |
+
# mel->f0
|
390 |
+
f0 = self.f0_predictor(speech_feat)
|
391 |
+
# f0->source
|
392 |
+
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
393 |
+
s, _, _ = self.m_source(s)
|
394 |
+
s = s.transpose(1, 2)
|
395 |
+
# mel+source->speech
|
396 |
+
generated_speech = self.decode(x=speech_feat, s=s)
|
397 |
+
return generated_speech, f0
|
398 |
+
|
399 |
+
@torch.inference_mode()
|
400 |
+
def inference(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
401 |
+
# mel->f0
|
402 |
+
f0 = self.f0_predictor(speech_feat)
|
403 |
+
# f0->source
|
404 |
+
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
405 |
+
s, _, _ = self.m_source(s)
|
406 |
+
s = s.transpose(1, 2)
|
407 |
+
# use cache_source to avoid glitch
|
408 |
+
if cache_source.shape[2] != 0:
|
409 |
+
s[:, :, :cache_source.shape[2]] = cache_source
|
410 |
+
generated_speech = self.decode(x=speech_feat, s=s)
|
411 |
+
return generated_speech, s
|
cosyvoice/hifigan/hifigan.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Optional
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from matcha.hifigan.models import feature_loss, generator_loss, discriminator_loss
|
6 |
+
from cosyvoice.utils.losses import tpr_loss, mel_loss
|
7 |
+
|
8 |
+
|
9 |
+
class HiFiGan(nn.Module):
|
10 |
+
def __init__(self, generator, discriminator, mel_spec_transform,
|
11 |
+
multi_mel_spectral_recon_loss_weight=45, feat_match_loss_weight=2.0,
|
12 |
+
tpr_loss_weight=1.0, tpr_loss_tau=0.04):
|
13 |
+
super(HiFiGan, self).__init__()
|
14 |
+
self.generator = generator
|
15 |
+
self.discriminator = discriminator
|
16 |
+
self.mel_spec_transform = mel_spec_transform
|
17 |
+
self.multi_mel_spectral_recon_loss_weight = multi_mel_spectral_recon_loss_weight
|
18 |
+
self.feat_match_loss_weight = feat_match_loss_weight
|
19 |
+
self.tpr_loss_weight = tpr_loss_weight
|
20 |
+
self.tpr_loss_tau = tpr_loss_tau
|
21 |
+
|
22 |
+
def forward(
|
23 |
+
self,
|
24 |
+
batch: dict,
|
25 |
+
device: torch.device,
|
26 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
27 |
+
if batch['turn'] == 'generator':
|
28 |
+
return self.forward_generator(batch, device)
|
29 |
+
else:
|
30 |
+
return self.forward_discriminator(batch, device)
|
31 |
+
|
32 |
+
def forward_generator(self, batch, device):
|
33 |
+
real_speech = batch['speech'].to(device)
|
34 |
+
pitch_feat = batch['pitch_feat'].to(device)
|
35 |
+
# 1. calculate generator outputs
|
36 |
+
generated_speech, generated_f0 = self.generator(batch, device)
|
37 |
+
# 2. calculate discriminator outputs
|
38 |
+
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
|
39 |
+
# 3. calculate generator losses, feature loss, mel loss, tpr losses [Optional]
|
40 |
+
loss_gen, _ = generator_loss(y_d_gs)
|
41 |
+
loss_fm = feature_loss(fmap_rs, fmap_gs)
|
42 |
+
loss_mel = mel_loss(real_speech, generated_speech, self.mel_spec_transform)
|
43 |
+
if self.tpr_loss_weight != 0:
|
44 |
+
loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
|
45 |
+
else:
|
46 |
+
loss_tpr = torch.zeros(1).to(device)
|
47 |
+
loss_f0 = F.l1_loss(generated_f0, pitch_feat)
|
48 |
+
loss = loss_gen + self.feat_match_loss_weight * loss_fm + \
|
49 |
+
self.multi_mel_spectral_recon_loss_weight * loss_mel + \
|
50 |
+
self.tpr_loss_weight * loss_tpr + loss_f0
|
51 |
+
return {'loss': loss, 'loss_gen': loss_gen, 'loss_fm': loss_fm, 'loss_mel': loss_mel, 'loss_tpr': loss_tpr, 'loss_f0': loss_f0}
|
52 |
+
|
53 |
+
def forward_discriminator(self, batch, device):
|
54 |
+
real_speech = batch['speech'].to(device)
|
55 |
+
# 1. calculate generator outputs
|
56 |
+
with torch.no_grad():
|
57 |
+
generated_speech, generated_f0 = self.generator(batch, device)
|
58 |
+
# 2. calculate discriminator outputs
|
59 |
+
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
|
60 |
+
# 3. calculate discriminator losses, tpr losses [Optional]
|
61 |
+
loss_disc, _, _ = discriminator_loss(y_d_rs, y_d_gs)
|
62 |
+
if self.tpr_loss_weight != 0:
|
63 |
+
loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
|
64 |
+
else:
|
65 |
+
loss_tpr = torch.zeros(1).to(device)
|
66 |
+
loss = loss_disc + self.tpr_loss_weight * loss_tpr
|
67 |
+
return {'loss': loss, 'loss_disc': loss_disc, 'loss_tpr': loss_tpr}
|
cosyvoice/llm/llm.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Dict, Optional, Callable, List, Generator
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from transformers import Qwen2ForCausalLM
|
19 |
+
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
20 |
+
from cosyvoice.utils.common import IGNORE_ID
|
21 |
+
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
22 |
+
from cosyvoice.utils.common import th_accuracy
|
23 |
+
|
24 |
+
|
25 |
+
class TransformerLM(torch.nn.Module):
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
text_encoder_input_size: int,
|
29 |
+
llm_input_size: int,
|
30 |
+
llm_output_size: int,
|
31 |
+
text_token_size: int,
|
32 |
+
speech_token_size: int,
|
33 |
+
text_encoder: torch.nn.Module,
|
34 |
+
llm: torch.nn.Module,
|
35 |
+
sampling: Callable,
|
36 |
+
length_normalized_loss: bool = True,
|
37 |
+
lsm_weight: float = 0.0,
|
38 |
+
spk_embed_dim: int = 192,
|
39 |
+
):
|
40 |
+
super().__init__()
|
41 |
+
self.llm_input_size = llm_input_size
|
42 |
+
self.speech_token_size = speech_token_size
|
43 |
+
# 1. build text token inputs related modules
|
44 |
+
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
|
45 |
+
self.text_encoder = text_encoder
|
46 |
+
self.text_encoder_affine_layer = nn.Linear(
|
47 |
+
self.text_encoder.output_size(),
|
48 |
+
llm_input_size
|
49 |
+
)
|
50 |
+
|
51 |
+
# 2. build speech token language model related modules
|
52 |
+
self.sos_eos = 0
|
53 |
+
self.task_id = 1
|
54 |
+
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
55 |
+
self.llm = llm
|
56 |
+
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
|
57 |
+
self.criterion_ce = LabelSmoothingLoss(
|
58 |
+
size=speech_token_size + 1,
|
59 |
+
padding_idx=IGNORE_ID,
|
60 |
+
smoothing=lsm_weight,
|
61 |
+
normalize_length=length_normalized_loss,
|
62 |
+
)
|
63 |
+
|
64 |
+
# 3. [Optional] build speech token related modules
|
65 |
+
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
|
66 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
|
67 |
+
|
68 |
+
# 4. sampling method
|
69 |
+
self.sampling = sampling
|
70 |
+
|
71 |
+
def encode(
|
72 |
+
self,
|
73 |
+
text: torch.Tensor,
|
74 |
+
text_lengths: torch.Tensor,
|
75 |
+
):
|
76 |
+
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
|
77 |
+
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
|
78 |
+
encoder_out = self.text_encoder_affine_layer(encoder_out)
|
79 |
+
return encoder_out, encoder_out_lens
|
80 |
+
|
81 |
+
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
82 |
+
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
83 |
+
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
84 |
+
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
|
85 |
+
for i in range(len(text_token))]
|
86 |
+
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
87 |
+
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
88 |
+
return lm_input, lm_input_len
|
89 |
+
|
90 |
+
def forward(
|
91 |
+
self,
|
92 |
+
batch: dict,
|
93 |
+
device: torch.device,
|
94 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
95 |
+
"""
|
96 |
+
Args:
|
97 |
+
text: (B, L, D)
|
98 |
+
text_lengths: (B,)
|
99 |
+
audio: (B, T, N) or (B, T)
|
100 |
+
audio_lengths: (B,)
|
101 |
+
"""
|
102 |
+
text_token = batch['text_token'].to(device)
|
103 |
+
text_token_len = batch['text_token_len'].to(device)
|
104 |
+
speech_token = batch['speech_token'].to(device)
|
105 |
+
speech_token_len = batch['speech_token_len'].to(device)
|
106 |
+
embedding = batch['embedding'].to(device)
|
107 |
+
|
108 |
+
# 1. prepare llm_target
|
109 |
+
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
110 |
+
[self.speech_token_size]) for i in range(text_token.size(0))]
|
111 |
+
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
112 |
+
|
113 |
+
# 1. encode text_token
|
114 |
+
text_token = self.text_embedding(text_token)
|
115 |
+
text_token, text_token_len = self.encode(text_token, text_token_len)
|
116 |
+
|
117 |
+
# 2. embedding projection
|
118 |
+
embedding = F.normalize(embedding, dim=1)
|
119 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
120 |
+
embedding = embedding.unsqueeze(1)
|
121 |
+
|
122 |
+
# 3. eos and task_id
|
123 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
124 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
125 |
+
|
126 |
+
# 4. encode speech_token
|
127 |
+
speech_token = self.speech_embedding(speech_token)
|
128 |
+
|
129 |
+
# 5. unpad and pad
|
130 |
+
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
|
131 |
+
task_id_emb, speech_token, speech_token_len)
|
132 |
+
|
133 |
+
# 6. run lm forward
|
134 |
+
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
135 |
+
logits = self.llm_decoder(lm_output)
|
136 |
+
loss = self.criterion_ce(logits, lm_target)
|
137 |
+
acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
|
138 |
+
return {'loss': loss, 'acc': acc}
|
139 |
+
|
140 |
+
def sampling_ids(
|
141 |
+
self,
|
142 |
+
weighted_scores: torch.Tensor,
|
143 |
+
decoded_tokens: List,
|
144 |
+
sampling: int,
|
145 |
+
ignore_eos: bool = True,
|
146 |
+
):
|
147 |
+
while True:
|
148 |
+
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
|
149 |
+
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
150 |
+
break
|
151 |
+
return top_ids
|
152 |
+
|
153 |
+
@torch.inference_mode()
|
154 |
+
def inference(
|
155 |
+
self,
|
156 |
+
text: torch.Tensor,
|
157 |
+
text_len: torch.Tensor,
|
158 |
+
prompt_text: torch.Tensor,
|
159 |
+
prompt_text_len: torch.Tensor,
|
160 |
+
prompt_speech_token: torch.Tensor,
|
161 |
+
prompt_speech_token_len: torch.Tensor,
|
162 |
+
embedding: torch.Tensor,
|
163 |
+
sampling: int = 25,
|
164 |
+
max_token_text_ratio: float = 20,
|
165 |
+
min_token_text_ratio: float = 2,
|
166 |
+
) -> Generator[torch.Tensor, None, None]:
|
167 |
+
device = text.device
|
168 |
+
text = torch.concat([prompt_text, text], dim=1)
|
169 |
+
text_len += prompt_text_len
|
170 |
+
text = self.text_embedding(text)
|
171 |
+
|
172 |
+
# 1. encode text
|
173 |
+
text, text_len = self.encode(text, text_len)
|
174 |
+
|
175 |
+
# 2. encode embedding
|
176 |
+
if embedding.shape[0] != 0:
|
177 |
+
embedding = F.normalize(embedding, dim=1)
|
178 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
179 |
+
embedding = embedding.unsqueeze(dim=1)
|
180 |
+
else:
|
181 |
+
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
182 |
+
|
183 |
+
# 3. concat llm_input
|
184 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
185 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
186 |
+
if prompt_speech_token_len != 0:
|
187 |
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
188 |
+
else:
|
189 |
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
190 |
+
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
191 |
+
|
192 |
+
# 4. cal min/max_length
|
193 |
+
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
194 |
+
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
195 |
+
|
196 |
+
# 5. step by step decode
|
197 |
+
out_tokens = []
|
198 |
+
offset = 0
|
199 |
+
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
200 |
+
for i in range(max_len):
|
201 |
+
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1,
|
202 |
+
att_cache=att_cache, cnn_cache=cnn_cache,
|
203 |
+
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
|
204 |
+
device=lm_input.device)).to(torch.bool))
|
205 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
206 |
+
# force continue decode first token
|
207 |
+
if i == 0:
|
208 |
+
logp[:, self.speech_token_size] = -float('inf')
|
209 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
210 |
+
if top_ids == self.speech_token_size:
|
211 |
+
break
|
212 |
+
# in stream mode, yield token one by one
|
213 |
+
yield top_ids
|
214 |
+
out_tokens.append(top_ids)
|
215 |
+
offset += lm_input.size(1)
|
216 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
217 |
+
|
218 |
+
|
219 |
+
class Qwen2Encoder(torch.nn.Module):
|
220 |
+
def __init__(self, pretrain_path):
|
221 |
+
super().__init__()
|
222 |
+
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
|
223 |
+
|
224 |
+
def forward_one_step(self, xs, masks, cache=None):
|
225 |
+
input_masks = masks[:, -1, :]
|
226 |
+
outs = self.model(
|
227 |
+
inputs_embeds=xs,
|
228 |
+
attention_mask=input_masks,
|
229 |
+
output_hidden_states=True,
|
230 |
+
return_dict=True,
|
231 |
+
use_cache=True,
|
232 |
+
past_key_values=cache,
|
233 |
+
)
|
234 |
+
xs = outs.hidden_states[-1]
|
235 |
+
new_cache = outs.past_key_values
|
236 |
+
return xs, new_cache
|
237 |
+
|
238 |
+
|
239 |
+
class Qwen2LM(torch.nn.Module):
|
240 |
+
def __init__(
|
241 |
+
self,
|
242 |
+
llm_input_size: int,
|
243 |
+
llm_output_size: int,
|
244 |
+
speech_token_size: int,
|
245 |
+
llm: torch.nn.Module,
|
246 |
+
sampling: Callable,
|
247 |
+
length_normalized_loss: bool = True,
|
248 |
+
lsm_weight: float = 0.0,
|
249 |
+
):
|
250 |
+
super().__init__()
|
251 |
+
self.llm_input_size = llm_input_size
|
252 |
+
self.llm_output_size = llm_output_size
|
253 |
+
self.speech_token_size = speech_token_size
|
254 |
+
|
255 |
+
# 2. build speech token language model related modules
|
256 |
+
self.sos_eos = 0
|
257 |
+
self.task_id = 1
|
258 |
+
self.fill_token = 2
|
259 |
+
|
260 |
+
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
261 |
+
self.llm = llm
|
262 |
+
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
|
263 |
+
self.criterion_ce = LabelSmoothingLoss(
|
264 |
+
size=speech_token_size + 3,
|
265 |
+
padding_idx=IGNORE_ID,
|
266 |
+
smoothing=lsm_weight,
|
267 |
+
normalize_length=length_normalized_loss,
|
268 |
+
)
|
269 |
+
|
270 |
+
# 3. [Optional] build speech token related modules
|
271 |
+
self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
|
272 |
+
|
273 |
+
# 4. sampling method
|
274 |
+
self.sampling = sampling
|
275 |
+
|
276 |
+
def sampling_ids(
|
277 |
+
self,
|
278 |
+
weighted_scores: torch.Tensor,
|
279 |
+
decoded_tokens: List,
|
280 |
+
sampling: int,
|
281 |
+
ignore_eos: bool = True,
|
282 |
+
):
|
283 |
+
while True:
|
284 |
+
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
|
285 |
+
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
286 |
+
break
|
287 |
+
return top_ids
|
288 |
+
|
289 |
+
@torch.inference_mode()
|
290 |
+
def inference(
|
291 |
+
self,
|
292 |
+
text: torch.Tensor,
|
293 |
+
text_len: torch.Tensor,
|
294 |
+
prompt_text: torch.Tensor,
|
295 |
+
prompt_text_len: torch.Tensor,
|
296 |
+
prompt_speech_token: torch.Tensor,
|
297 |
+
prompt_speech_token_len: torch.Tensor,
|
298 |
+
embedding: torch.Tensor,
|
299 |
+
sampling: int = 25,
|
300 |
+
max_token_text_ratio: float = 20,
|
301 |
+
min_token_text_ratio: float = 2,
|
302 |
+
) -> Generator[torch.Tensor, None, None]:
|
303 |
+
device = text.device
|
304 |
+
text = torch.concat([prompt_text, text], dim=1)
|
305 |
+
text_len += prompt_text_len
|
306 |
+
text = self.llm.model.model.embed_tokens(text)
|
307 |
+
|
308 |
+
# 2. encode embedding
|
309 |
+
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
310 |
+
|
311 |
+
# 3. concat llm_input
|
312 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
313 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
314 |
+
if prompt_speech_token_len != 0:
|
315 |
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
316 |
+
else:
|
317 |
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
318 |
+
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
319 |
+
|
320 |
+
# 4. cal min/max_length
|
321 |
+
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
322 |
+
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
323 |
+
|
324 |
+
# 5. step by step decode
|
325 |
+
out_tokens = []
|
326 |
+
cache = None
|
327 |
+
for i in range(max_len):
|
328 |
+
y_pred, cache = self.llm.forward_one_step(lm_input,
|
329 |
+
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
|
330 |
+
cache=cache)
|
331 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
332 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
333 |
+
if top_ids == self.speech_token_size:
|
334 |
+
break
|
335 |
+
if top_ids > self.speech_token_size:
|
336 |
+
continue
|
337 |
+
# in stream mode, yield token one by one
|
338 |
+
yield top_ids
|
339 |
+
out_tokens.append(top_ids)
|
340 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cosyvoice/tokenizer/tokenizer.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import os
|
3 |
+
from functools import lru_cache
|
4 |
+
from typing import Optional
|
5 |
+
import torch
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
from whisper.tokenizer import Tokenizer
|
8 |
+
|
9 |
+
import tiktoken
|
10 |
+
|
11 |
+
LANGUAGES = {
|
12 |
+
"en": "english",
|
13 |
+
"zh": "chinese",
|
14 |
+
"de": "german",
|
15 |
+
"es": "spanish",
|
16 |
+
"ru": "russian",
|
17 |
+
"ko": "korean",
|
18 |
+
"fr": "french",
|
19 |
+
"ja": "japanese",
|
20 |
+
"pt": "portuguese",
|
21 |
+
"tr": "turkish",
|
22 |
+
"pl": "polish",
|
23 |
+
"ca": "catalan",
|
24 |
+
"nl": "dutch",
|
25 |
+
"ar": "arabic",
|
26 |
+
"sv": "swedish",
|
27 |
+
"it": "italian",
|
28 |
+
"id": "indonesian",
|
29 |
+
"hi": "hindi",
|
30 |
+
"fi": "finnish",
|
31 |
+
"vi": "vietnamese",
|
32 |
+
"he": "hebrew",
|
33 |
+
"uk": "ukrainian",
|
34 |
+
"el": "greek",
|
35 |
+
"ms": "malay",
|
36 |
+
"cs": "czech",
|
37 |
+
"ro": "romanian",
|
38 |
+
"da": "danish",
|
39 |
+
"hu": "hungarian",
|
40 |
+
"ta": "tamil",
|
41 |
+
"no": "norwegian",
|
42 |
+
"th": "thai",
|
43 |
+
"ur": "urdu",
|
44 |
+
"hr": "croatian",
|
45 |
+
"bg": "bulgarian",
|
46 |
+
"lt": "lithuanian",
|
47 |
+
"la": "latin",
|
48 |
+
"mi": "maori",
|
49 |
+
"ml": "malayalam",
|
50 |
+
"cy": "welsh",
|
51 |
+
"sk": "slovak",
|
52 |
+
"te": "telugu",
|
53 |
+
"fa": "persian",
|
54 |
+
"lv": "latvian",
|
55 |
+
"bn": "bengali",
|
56 |
+
"sr": "serbian",
|
57 |
+
"az": "azerbaijani",
|
58 |
+
"sl": "slovenian",
|
59 |
+
"kn": "kannada",
|
60 |
+
"et": "estonian",
|
61 |
+
"mk": "macedonian",
|
62 |
+
"br": "breton",
|
63 |
+
"eu": "basque",
|
64 |
+
"is": "icelandic",
|
65 |
+
"hy": "armenian",
|
66 |
+
"ne": "nepali",
|
67 |
+
"mn": "mongolian",
|
68 |
+
"bs": "bosnian",
|
69 |
+
"kk": "kazakh",
|
70 |
+
"sq": "albanian",
|
71 |
+
"sw": "swahili",
|
72 |
+
"gl": "galician",
|
73 |
+
"mr": "marathi",
|
74 |
+
"pa": "punjabi",
|
75 |
+
"si": "sinhala",
|
76 |
+
"km": "khmer",
|
77 |
+
"sn": "shona",
|
78 |
+
"yo": "yoruba",
|
79 |
+
"so": "somali",
|
80 |
+
"af": "afrikaans",
|
81 |
+
"oc": "occitan",
|
82 |
+
"ka": "georgian",
|
83 |
+
"be": "belarusian",
|
84 |
+
"tg": "tajik",
|
85 |
+
"sd": "sindhi",
|
86 |
+
"gu": "gujarati",
|
87 |
+
"am": "amharic",
|
88 |
+
"yi": "yiddish",
|
89 |
+
"lo": "lao",
|
90 |
+
"uz": "uzbek",
|
91 |
+
"fo": "faroese",
|
92 |
+
"ht": "haitian creole",
|
93 |
+
"ps": "pashto",
|
94 |
+
"tk": "turkmen",
|
95 |
+
"nn": "nynorsk",
|
96 |
+
"mt": "maltese",
|
97 |
+
"sa": "sanskrit",
|
98 |
+
"lb": "luxembourgish",
|
99 |
+
"my": "myanmar",
|
100 |
+
"bo": "tibetan",
|
101 |
+
"tl": "tagalog",
|
102 |
+
"mg": "malagasy",
|
103 |
+
"as": "assamese",
|
104 |
+
"tt": "tatar",
|
105 |
+
"haw": "hawaiian",
|
106 |
+
"ln": "lingala",
|
107 |
+
"ha": "hausa",
|
108 |
+
"ba": "bashkir",
|
109 |
+
"jw": "javanese",
|
110 |
+
"su": "sundanese",
|
111 |
+
"yue": "cantonese",
|
112 |
+
"minnan": "minnan",
|
113 |
+
"wuyu": "wuyu",
|
114 |
+
"dialect": "dialect",
|
115 |
+
"zh/en": "zh/en",
|
116 |
+
"en/zh": "en/zh",
|
117 |
+
}
|
118 |
+
|
119 |
+
# language code lookup by name, with a few language aliases
|
120 |
+
TO_LANGUAGE_CODE = {
|
121 |
+
**{language: code for code, language in LANGUAGES.items()},
|
122 |
+
"burmese": "my",
|
123 |
+
"valencian": "ca",
|
124 |
+
"flemish": "nl",
|
125 |
+
"haitian": "ht",
|
126 |
+
"letzeburgesch": "lb",
|
127 |
+
"pushto": "ps",
|
128 |
+
"panjabi": "pa",
|
129 |
+
"moldavian": "ro",
|
130 |
+
"moldovan": "ro",
|
131 |
+
"sinhalese": "si",
|
132 |
+
"castilian": "es",
|
133 |
+
"mandarin": "zh",
|
134 |
+
}
|
135 |
+
|
136 |
+
AUDIO_EVENT = {
|
137 |
+
"ASR": "ASR",
|
138 |
+
"AED": "AED",
|
139 |
+
"SER": "SER",
|
140 |
+
"Speech": "Speech",
|
141 |
+
"/Speech": "/Speech",
|
142 |
+
"BGM": "BGM",
|
143 |
+
"/BGM": "/BGM",
|
144 |
+
"Laughter": "Laughter",
|
145 |
+
"/Laughter": "/Laughter",
|
146 |
+
"Applause": "Applause",
|
147 |
+
"/Applause": "/Applause",
|
148 |
+
}
|
149 |
+
|
150 |
+
EMOTION = {
|
151 |
+
"HAPPY": "HAPPY",
|
152 |
+
"SAD": "SAD",
|
153 |
+
"ANGRY": "ANGRY",
|
154 |
+
"NEUTRAL": "NEUTRAL",
|
155 |
+
}
|
156 |
+
|
157 |
+
TTS_Vocal_Token = {
|
158 |
+
"TTS/B": "TTS/B",
|
159 |
+
"TTS/O": "TTS/O",
|
160 |
+
"TTS/Q": "TTS/Q",
|
161 |
+
"TTS/A": "TTS/A",
|
162 |
+
"TTS/CO": "TTS/CO",
|
163 |
+
"TTS/CL": "TTS/CL",
|
164 |
+
"TTS/H": "TTS/H",
|
165 |
+
**{f"TTS/SP{i:02d}": f"TTS/SP{i:02d}" for i in range(1, 14)}
|
166 |
+
}
|
167 |
+
|
168 |
+
|
169 |
+
@lru_cache(maxsize=None)
|
170 |
+
def get_encoding(name: str = "gpt2", num_languages: int = 99):
|
171 |
+
vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
|
172 |
+
ranks = {
|
173 |
+
base64.b64decode(token): int(rank)
|
174 |
+
for token, rank in (line.split() for line in open(vocab_path) if line)
|
175 |
+
}
|
176 |
+
n_vocab = len(ranks)
|
177 |
+
special_tokens = {}
|
178 |
+
|
179 |
+
specials = [
|
180 |
+
"<|endoftext|>",
|
181 |
+
"<|startoftranscript|>",
|
182 |
+
*[f"<|{lang}|>" for lang in list(LANGUAGES.keys())[:num_languages]],
|
183 |
+
*[f"<|{audio_event}|>" for audio_event in list(AUDIO_EVENT.keys())],
|
184 |
+
*[f"<|{emotion}|>" for emotion in list(EMOTION.keys())],
|
185 |
+
"<|translate|>",
|
186 |
+
"<|transcribe|>",
|
187 |
+
"<|startoflm|>",
|
188 |
+
"<|startofprev|>",
|
189 |
+
"<|nospeech|>",
|
190 |
+
"<|notimestamps|>",
|
191 |
+
*[f"<|SPECIAL_TOKEN_{i}|>" for i in range(1, 31)], # register special tokens for ASR
|
192 |
+
*[f"<|{tts}|>" for tts in list(TTS_Vocal_Token.keys())], # register special tokens for TTS
|
193 |
+
*[f"<|{i * 0.02:.2f}|>" for i in range(1501)],
|
194 |
+
]
|
195 |
+
|
196 |
+
for token in specials:
|
197 |
+
special_tokens[token] = n_vocab
|
198 |
+
n_vocab += 1
|
199 |
+
|
200 |
+
return tiktoken.Encoding(
|
201 |
+
name=os.path.basename(vocab_path),
|
202 |
+
explicit_n_vocab=n_vocab,
|
203 |
+
pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""",
|
204 |
+
mergeable_ranks=ranks,
|
205 |
+
special_tokens=special_tokens,
|
206 |
+
)
|
207 |
+
|
208 |
+
|
209 |
+
@lru_cache(maxsize=None)
|
210 |
+
def get_tokenizer(
|
211 |
+
multilingual: bool,
|
212 |
+
*,
|
213 |
+
num_languages: int = 99,
|
214 |
+
language: Optional[str] = None,
|
215 |
+
task: Optional[str] = None, # Literal["transcribe", "translate", None]
|
216 |
+
) -> Tokenizer:
|
217 |
+
if language is not None:
|
218 |
+
language = language.lower()
|
219 |
+
if language not in LANGUAGES:
|
220 |
+
if language in TO_LANGUAGE_CODE:
|
221 |
+
language = TO_LANGUAGE_CODE[language]
|
222 |
+
else:
|
223 |
+
raise ValueError(f"Unsupported language: {language}")
|
224 |
+
|
225 |
+
if multilingual:
|
226 |
+
encoding_name = "multilingual_zh_ja_yue_char_del"
|
227 |
+
language = language or "en"
|
228 |
+
task = task or "transcribe"
|
229 |
+
else:
|
230 |
+
encoding_name = "gpt2"
|
231 |
+
language = None
|
232 |
+
task = None
|
233 |
+
|
234 |
+
encoding = get_encoding(name=encoding_name, num_languages=num_languages)
|
235 |
+
|
236 |
+
return Tokenizer(
|
237 |
+
encoding=encoding, num_languages=num_languages, language=language, task=task
|
238 |
+
)
|
239 |
+
|
240 |
+
|
241 |
+
class QwenTokenizer():
|
242 |
+
def __init__(self, token_path, skip_special_tokens=True):
|
243 |
+
super().__init__()
|
244 |
+
# NOTE: non-chat model, all these special tokens keep randomly initialized.
|
245 |
+
special_tokens = {
|
246 |
+
'eos_token': '<|endoftext|>',
|
247 |
+
'pad_token': '<|endoftext|>',
|
248 |
+
'additional_special_tokens': [
|
249 |
+
'<|im_start|>', '<|im_end|>', '<|endofprompt|>',
|
250 |
+
'[breath]', '<strong>', '</strong>', '[noise]',
|
251 |
+
'[laughter]', '[cough]', '[clucking]', '[accent]',
|
252 |
+
'[quick_breath]',
|
253 |
+
"<laughter>", "</laughter>",
|
254 |
+
"[hissing]", "[sigh]", "[vocalized-noise]",
|
255 |
+
"[lipsmack]", "[mn]"
|
256 |
+
]
|
257 |
+
}
|
258 |
+
self.tokenizer = AutoTokenizer.from_pretrained(token_path)
|
259 |
+
self.tokenizer.add_special_tokens(special_tokens)
|
260 |
+
self.skip_special_tokens = skip_special_tokens
|
261 |
+
|
262 |
+
def encode(self, text, **kwargs):
|
263 |
+
tokens = self.tokenizer([text], return_tensors="pt")
|
264 |
+
tokens = tokens["input_ids"][0].cpu().tolist()
|
265 |
+
return tokens
|
266 |
+
|
267 |
+
def decode(self, tokens):
|
268 |
+
tokens = torch.tensor(tokens, dtype=torch.int64)
|
269 |
+
text = self.tokenizer.batch_decode([tokens], skip_special_tokens=self.skip_special_tokens)[0]
|
270 |
+
return text
|
271 |
+
|
272 |
+
@lru_cache(maxsize=None)
|
273 |
+
def get_qwen_tokenizer(
|
274 |
+
token_path: str,
|
275 |
+
skip_special_tokens: bool
|
276 |
+
) -> QwenTokenizer:
|
277 |
+
return QwenTokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)
|
cosyvoice/transformer/__init__.py
ADDED
File without changes
|
cosyvoice/transformer/activation.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Johns Hopkins University (Shinji Watanabe)
|
2 |
+
# 2020 Northwestern Polytechnical University (Pengcheng Guo)
|
3 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
4 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
"""Swish() activation function for Conformer."""
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn, sin, pow
|
21 |
+
from torch.nn import Parameter
|
22 |
+
|
23 |
+
|
24 |
+
class Swish(torch.nn.Module):
|
25 |
+
"""Construct an Swish object."""
|
26 |
+
|
27 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
28 |
+
"""Return Swish activation function."""
|
29 |
+
return x * torch.sigmoid(x)
|
30 |
+
|
31 |
+
|
32 |
+
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
33 |
+
# LICENSE is in incl_licenses directory.
|
34 |
+
class Snake(nn.Module):
|
35 |
+
'''
|
36 |
+
Implementation of a sine-based periodic activation function
|
37 |
+
Shape:
|
38 |
+
- Input: (B, C, T)
|
39 |
+
- Output: (B, C, T), same shape as the input
|
40 |
+
Parameters:
|
41 |
+
- alpha - trainable parameter
|
42 |
+
References:
|
43 |
+
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
44 |
+
https://arxiv.org/abs/2006.08195
|
45 |
+
Examples:
|
46 |
+
>>> a1 = snake(256)
|
47 |
+
>>> x = torch.randn(256)
|
48 |
+
>>> x = a1(x)
|
49 |
+
'''
|
50 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
51 |
+
'''
|
52 |
+
Initialization.
|
53 |
+
INPUT:
|
54 |
+
- in_features: shape of the input
|
55 |
+
- alpha: trainable parameter
|
56 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
57 |
+
alpha will be trained along with the rest of your model.
|
58 |
+
'''
|
59 |
+
super(Snake, self).__init__()
|
60 |
+
self.in_features = in_features
|
61 |
+
|
62 |
+
# initialize alpha
|
63 |
+
self.alpha_logscale = alpha_logscale
|
64 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
65 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
66 |
+
else: # linear scale alphas initialized to ones
|
67 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
68 |
+
|
69 |
+
self.alpha.requires_grad = alpha_trainable
|
70 |
+
|
71 |
+
self.no_div_by_zero = 0.000000001
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
'''
|
75 |
+
Forward pass of the function.
|
76 |
+
Applies the function to the input elementwise.
|
77 |
+
Snake ∶= x + 1/a * sin^2 (xa)
|
78 |
+
'''
|
79 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
80 |
+
if self.alpha_logscale:
|
81 |
+
alpha = torch.exp(alpha)
|
82 |
+
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
83 |
+
|
84 |
+
return x
|
cosyvoice/transformer/attention.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
# 2022 Xingchen Song ([email protected])
|
4 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
"""Multi-Head Attention layer definition."""
|
18 |
+
|
19 |
+
import math
|
20 |
+
from typing import Tuple
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
|
26 |
+
class MultiHeadedAttention(nn.Module):
|
27 |
+
"""Multi-Head Attention layer.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
n_head (int): The number of heads.
|
31 |
+
n_feat (int): The number of features.
|
32 |
+
dropout_rate (float): Dropout rate.
|
33 |
+
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self,
|
37 |
+
n_head: int,
|
38 |
+
n_feat: int,
|
39 |
+
dropout_rate: float,
|
40 |
+
key_bias: bool = True):
|
41 |
+
"""Construct an MultiHeadedAttention object."""
|
42 |
+
super().__init__()
|
43 |
+
assert n_feat % n_head == 0
|
44 |
+
# We assume d_v always equals d_k
|
45 |
+
self.d_k = n_feat // n_head
|
46 |
+
self.h = n_head
|
47 |
+
self.linear_q = nn.Linear(n_feat, n_feat)
|
48 |
+
self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
|
49 |
+
self.linear_v = nn.Linear(n_feat, n_feat)
|
50 |
+
self.linear_out = nn.Linear(n_feat, n_feat)
|
51 |
+
self.dropout = nn.Dropout(p=dropout_rate)
|
52 |
+
|
53 |
+
def forward_qkv(
|
54 |
+
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
|
55 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
56 |
+
"""Transform query, key and value.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
60 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
61 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
torch.Tensor: Transformed query tensor, size
|
65 |
+
(#batch, n_head, time1, d_k).
|
66 |
+
torch.Tensor: Transformed key tensor, size
|
67 |
+
(#batch, n_head, time2, d_k).
|
68 |
+
torch.Tensor: Transformed value tensor, size
|
69 |
+
(#batch, n_head, time2, d_k).
|
70 |
+
|
71 |
+
"""
|
72 |
+
n_batch = query.size(0)
|
73 |
+
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
74 |
+
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
75 |
+
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
76 |
+
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
77 |
+
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
78 |
+
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
79 |
+
|
80 |
+
return q, k, v
|
81 |
+
|
82 |
+
def forward_attention(
|
83 |
+
self,
|
84 |
+
value: torch.Tensor,
|
85 |
+
scores: torch.Tensor,
|
86 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
|
87 |
+
) -> torch.Tensor:
|
88 |
+
"""Compute attention context vector.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
value (torch.Tensor): Transformed value, size
|
92 |
+
(#batch, n_head, time2, d_k).
|
93 |
+
scores (torch.Tensor): Attention score, size
|
94 |
+
(#batch, n_head, time1, time2).
|
95 |
+
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
|
96 |
+
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
torch.Tensor: Transformed value (#batch, time1, d_model)
|
100 |
+
weighted by the attention score (#batch, time1, time2).
|
101 |
+
|
102 |
+
"""
|
103 |
+
n_batch = value.size(0)
|
104 |
+
# NOTE(xcsong): When will `if mask.size(2) > 0` be True?
|
105 |
+
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
|
106 |
+
# 1st chunk to ease the onnx export.]
|
107 |
+
# 2. pytorch training
|
108 |
+
if mask.size(2) > 0: # time2 > 0
|
109 |
+
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
110 |
+
# For last chunk, time2 might be larger than scores.size(-1)
|
111 |
+
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
|
112 |
+
scores = scores.masked_fill(mask, -float('inf'))
|
113 |
+
attn = torch.softmax(scores, dim=-1).masked_fill(
|
114 |
+
mask, 0.0) # (batch, head, time1, time2)
|
115 |
+
# NOTE(xcsong): When will `if mask.size(2) > 0` be False?
|
116 |
+
# 1. onnx(16/-1, -1/-1, 16/0)
|
117 |
+
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
|
118 |
+
else:
|
119 |
+
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
120 |
+
|
121 |
+
p_attn = self.dropout(attn)
|
122 |
+
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
123 |
+
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
|
124 |
+
self.h * self.d_k)
|
125 |
+
) # (batch, time1, d_model)
|
126 |
+
|
127 |
+
return self.linear_out(x) # (batch, time1, d_model)
|
128 |
+
|
129 |
+
def forward(
|
130 |
+
self,
|
131 |
+
query: torch.Tensor,
|
132 |
+
key: torch.Tensor,
|
133 |
+
value: torch.Tensor,
|
134 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
135 |
+
pos_emb: torch.Tensor = torch.empty(0),
|
136 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
137 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
138 |
+
"""Compute scaled dot product attention.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
142 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
143 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
144 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
145 |
+
(#batch, time1, time2).
|
146 |
+
1.When applying cross attention between decoder and encoder,
|
147 |
+
the batch padding mask for input is in (#batch, 1, T) shape.
|
148 |
+
2.When applying self attention of encoder,
|
149 |
+
the mask is in (#batch, T, T) shape.
|
150 |
+
3.When applying self attention of decoder,
|
151 |
+
the mask is in (#batch, L, L) shape.
|
152 |
+
4.If the different position in decoder see different block
|
153 |
+
of the encoder, such as Mocha, the passed in mask could be
|
154 |
+
in (#batch, L, T) shape. But there is no such case in current
|
155 |
+
CosyVoice.
|
156 |
+
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
157 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
158 |
+
and `head * d_k == size`
|
159 |
+
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
163 |
+
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
164 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
165 |
+
and `head * d_k == size`
|
166 |
+
|
167 |
+
"""
|
168 |
+
q, k, v = self.forward_qkv(query, key, value)
|
169 |
+
|
170 |
+
# NOTE(xcsong):
|
171 |
+
# when export onnx model, for 1st chunk, we feed
|
172 |
+
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
173 |
+
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
174 |
+
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
175 |
+
# and we will always do splitting and
|
176 |
+
# concatnation(this will simplify onnx export). Note that
|
177 |
+
# it's OK to concat & split zero-shaped tensors(see code below).
|
178 |
+
# when export jit model, for 1st chunk, we always feed
|
179 |
+
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
180 |
+
# >>> a = torch.ones((1, 2, 0, 4))
|
181 |
+
# >>> b = torch.ones((1, 2, 3, 4))
|
182 |
+
# >>> c = torch.cat((a, b), dim=2)
|
183 |
+
# >>> torch.equal(b, c) # True
|
184 |
+
# >>> d = torch.split(a, 2, dim=-1)
|
185 |
+
# >>> torch.equal(d[0], d[1]) # True
|
186 |
+
if cache.size(0) > 0:
|
187 |
+
key_cache, value_cache = torch.split(cache,
|
188 |
+
cache.size(-1) // 2,
|
189 |
+
dim=-1)
|
190 |
+
k = torch.cat([key_cache, k], dim=2)
|
191 |
+
v = torch.cat([value_cache, v], dim=2)
|
192 |
+
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
193 |
+
# non-trivial to calculate `next_cache_start` here.
|
194 |
+
new_cache = torch.cat((k, v), dim=-1)
|
195 |
+
|
196 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
197 |
+
return self.forward_attention(v, scores, mask), new_cache
|
198 |
+
|
199 |
+
|
200 |
+
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
201 |
+
"""Multi-Head Attention layer with relative position encoding.
|
202 |
+
Paper: https://arxiv.org/abs/1901.02860
|
203 |
+
Args:
|
204 |
+
n_head (int): The number of heads.
|
205 |
+
n_feat (int): The number of features.
|
206 |
+
dropout_rate (float): Dropout rate.
|
207 |
+
"""
|
208 |
+
|
209 |
+
def __init__(self,
|
210 |
+
n_head: int,
|
211 |
+
n_feat: int,
|
212 |
+
dropout_rate: float,
|
213 |
+
key_bias: bool = True):
|
214 |
+
"""Construct an RelPositionMultiHeadedAttention object."""
|
215 |
+
super().__init__(n_head, n_feat, dropout_rate, key_bias)
|
216 |
+
# linear transformation for positional encoding
|
217 |
+
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
218 |
+
# these two learnable bias are used in matrix c and matrix d
|
219 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
220 |
+
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
221 |
+
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
222 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
223 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
224 |
+
|
225 |
+
def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
|
226 |
+
"""Compute relative positional encoding.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
|
230 |
+
time1 means the length of query vector.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
torch.Tensor: Output tensor.
|
234 |
+
|
235 |
+
"""
|
236 |
+
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
|
237 |
+
device=x.device,
|
238 |
+
dtype=x.dtype)
|
239 |
+
x_padded = torch.cat([zero_pad, x], dim=-1)
|
240 |
+
|
241 |
+
x_padded = x_padded.view(x.size()[0],
|
242 |
+
x.size()[1],
|
243 |
+
x.size(3) + 1, x.size(2))
|
244 |
+
x = x_padded[:, :, 1:].view_as(x)[
|
245 |
+
:, :, :, : x.size(-1) // 2 + 1
|
246 |
+
] # only keep the positions from 0 to time2
|
247 |
+
return x
|
248 |
+
|
249 |
+
def forward(
|
250 |
+
self,
|
251 |
+
query: torch.Tensor,
|
252 |
+
key: torch.Tensor,
|
253 |
+
value: torch.Tensor,
|
254 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
255 |
+
pos_emb: torch.Tensor = torch.empty(0),
|
256 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
257 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
258 |
+
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
259 |
+
Args:
|
260 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
261 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
262 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
263 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
264 |
+
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
265 |
+
pos_emb (torch.Tensor): Positional embedding tensor
|
266 |
+
(#batch, time2, size).
|
267 |
+
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
268 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
269 |
+
and `head * d_k == size`
|
270 |
+
Returns:
|
271 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
272 |
+
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
273 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
274 |
+
and `head * d_k == size`
|
275 |
+
"""
|
276 |
+
q, k, v = self.forward_qkv(query, key, value)
|
277 |
+
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
278 |
+
|
279 |
+
# NOTE(xcsong):
|
280 |
+
# when export onnx model, for 1st chunk, we feed
|
281 |
+
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
282 |
+
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
283 |
+
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
284 |
+
# and we will always do splitting and
|
285 |
+
# concatnation(this will simplify onnx export). Note that
|
286 |
+
# it's OK to concat & split zero-shaped tensors(see code below).
|
287 |
+
# when export jit model, for 1st chunk, we always feed
|
288 |
+
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
289 |
+
# >>> a = torch.ones((1, 2, 0, 4))
|
290 |
+
# >>> b = torch.ones((1, 2, 3, 4))
|
291 |
+
# >>> c = torch.cat((a, b), dim=2)
|
292 |
+
# >>> torch.equal(b, c) # True
|
293 |
+
# >>> d = torch.split(a, 2, dim=-1)
|
294 |
+
# >>> torch.equal(d[0], d[1]) # True
|
295 |
+
if cache.size(0) > 0:
|
296 |
+
key_cache, value_cache = torch.split(cache,
|
297 |
+
cache.size(-1) // 2,
|
298 |
+
dim=-1)
|
299 |
+
k = torch.cat([key_cache, k], dim=2)
|
300 |
+
v = torch.cat([value_cache, v], dim=2)
|
301 |
+
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
302 |
+
# non-trivial to calculate `next_cache_start` here.
|
303 |
+
new_cache = torch.cat((k, v), dim=-1)
|
304 |
+
|
305 |
+
n_batch_pos = pos_emb.size(0)
|
306 |
+
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
307 |
+
p = p.transpose(1, 2) # (batch, head, time1, d_k)
|
308 |
+
|
309 |
+
# (batch, head, time1, d_k)
|
310 |
+
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
311 |
+
# (batch, head, time1, d_k)
|
312 |
+
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
313 |
+
|
314 |
+
# compute attention score
|
315 |
+
# first compute matrix a and matrix c
|
316 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
317 |
+
# (batch, head, time1, time2)
|
318 |
+
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
319 |
+
|
320 |
+
# compute matrix b and matrix d
|
321 |
+
# (batch, head, time1, time2)
|
322 |
+
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
323 |
+
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
|
324 |
+
if matrix_ac.shape != matrix_bd.shape:
|
325 |
+
matrix_bd = self.rel_shift(matrix_bd)
|
326 |
+
|
327 |
+
scores = (matrix_ac + matrix_bd) / math.sqrt(
|
328 |
+
self.d_k) # (batch, head, time1, time2)
|
329 |
+
|
330 |
+
return self.forward_attention(v, scores, mask), new_cache
|
cosyvoice/transformer/convolution.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""ConvolutionModule definition."""
|
17 |
+
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
|
23 |
+
|
24 |
+
class ConvolutionModule(nn.Module):
|
25 |
+
"""ConvolutionModule in Conformer model."""
|
26 |
+
|
27 |
+
def __init__(self,
|
28 |
+
channels: int,
|
29 |
+
kernel_size: int = 15,
|
30 |
+
activation: nn.Module = nn.ReLU(),
|
31 |
+
norm: str = "batch_norm",
|
32 |
+
causal: bool = False,
|
33 |
+
bias: bool = True):
|
34 |
+
"""Construct an ConvolutionModule object.
|
35 |
+
Args:
|
36 |
+
channels (int): The number of channels of conv layers.
|
37 |
+
kernel_size (int): Kernel size of conv layers.
|
38 |
+
causal (int): Whether use causal convolution or not
|
39 |
+
"""
|
40 |
+
super().__init__()
|
41 |
+
|
42 |
+
self.pointwise_conv1 = nn.Conv1d(
|
43 |
+
channels,
|
44 |
+
2 * channels,
|
45 |
+
kernel_size=1,
|
46 |
+
stride=1,
|
47 |
+
padding=0,
|
48 |
+
bias=bias,
|
49 |
+
)
|
50 |
+
# self.lorder is used to distinguish if it's a causal convolution,
|
51 |
+
# if self.lorder > 0: it's a causal convolution, the input will be
|
52 |
+
# padded with self.lorder frames on the left in forward.
|
53 |
+
# else: it's a symmetrical convolution
|
54 |
+
if causal:
|
55 |
+
padding = 0
|
56 |
+
self.lorder = kernel_size - 1
|
57 |
+
else:
|
58 |
+
# kernel_size should be an odd number for none causal convolution
|
59 |
+
assert (kernel_size - 1) % 2 == 0
|
60 |
+
padding = (kernel_size - 1) // 2
|
61 |
+
self.lorder = 0
|
62 |
+
self.depthwise_conv = nn.Conv1d(
|
63 |
+
channels,
|
64 |
+
channels,
|
65 |
+
kernel_size,
|
66 |
+
stride=1,
|
67 |
+
padding=padding,
|
68 |
+
groups=channels,
|
69 |
+
bias=bias,
|
70 |
+
)
|
71 |
+
|
72 |
+
assert norm in ['batch_norm', 'layer_norm']
|
73 |
+
if norm == "batch_norm":
|
74 |
+
self.use_layer_norm = False
|
75 |
+
self.norm = nn.BatchNorm1d(channels)
|
76 |
+
else:
|
77 |
+
self.use_layer_norm = True
|
78 |
+
self.norm = nn.LayerNorm(channels)
|
79 |
+
|
80 |
+
self.pointwise_conv2 = nn.Conv1d(
|
81 |
+
channels,
|
82 |
+
channels,
|
83 |
+
kernel_size=1,
|
84 |
+
stride=1,
|
85 |
+
padding=0,
|
86 |
+
bias=bias,
|
87 |
+
)
|
88 |
+
self.activation = activation
|
89 |
+
|
90 |
+
def forward(
|
91 |
+
self,
|
92 |
+
x: torch.Tensor,
|
93 |
+
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
94 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0)),
|
95 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
96 |
+
"""Compute convolution module.
|
97 |
+
Args:
|
98 |
+
x (torch.Tensor): Input tensor (#batch, time, channels).
|
99 |
+
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
|
100 |
+
(0, 0, 0) means fake mask.
|
101 |
+
cache (torch.Tensor): left context cache, it is only
|
102 |
+
used in causal convolution (#batch, channels, cache_t),
|
103 |
+
(0, 0, 0) meas fake cache.
|
104 |
+
Returns:
|
105 |
+
torch.Tensor: Output tensor (#batch, time, channels).
|
106 |
+
"""
|
107 |
+
# exchange the temporal dimension and the feature dimension
|
108 |
+
x = x.transpose(1, 2) # (#batch, channels, time)
|
109 |
+
|
110 |
+
# mask batch padding
|
111 |
+
if mask_pad.size(2) > 0: # time > 0
|
112 |
+
x.masked_fill_(~mask_pad, 0.0)
|
113 |
+
|
114 |
+
if self.lorder > 0:
|
115 |
+
if cache.size(2) == 0: # cache_t == 0
|
116 |
+
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
|
117 |
+
else:
|
118 |
+
assert cache.size(0) == x.size(0) # equal batch
|
119 |
+
assert cache.size(1) == x.size(1) # equal channel
|
120 |
+
x = torch.cat((cache, x), dim=2)
|
121 |
+
assert (x.size(2) > self.lorder)
|
122 |
+
new_cache = x[:, :, -self.lorder:]
|
123 |
+
else:
|
124 |
+
# It's better we just return None if no cache is required,
|
125 |
+
# However, for JIT export, here we just fake one tensor instead of
|
126 |
+
# None.
|
127 |
+
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
128 |
+
|
129 |
+
# GLU mechanism
|
130 |
+
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
|
131 |
+
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
|
132 |
+
|
133 |
+
# 1D Depthwise Conv
|
134 |
+
x = self.depthwise_conv(x)
|
135 |
+
if self.use_layer_norm:
|
136 |
+
x = x.transpose(1, 2)
|
137 |
+
x = self.activation(self.norm(x))
|
138 |
+
if self.use_layer_norm:
|
139 |
+
x = x.transpose(1, 2)
|
140 |
+
x = self.pointwise_conv2(x)
|
141 |
+
# mask batch padding
|
142 |
+
if mask_pad.size(2) > 0: # time > 0
|
143 |
+
x.masked_fill_(~mask_pad, 0.0)
|
144 |
+
|
145 |
+
return x.transpose(1, 2), new_cache
|
cosyvoice/transformer/decoder.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Decoder definition."""
|
17 |
+
from typing import Tuple, List, Optional
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.utils.checkpoint as ckpt
|
21 |
+
import logging
|
22 |
+
|
23 |
+
from cosyvoice.transformer.decoder_layer import DecoderLayer
|
24 |
+
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
25 |
+
from cosyvoice.utils.class_utils import (
|
26 |
+
COSYVOICE_EMB_CLASSES,
|
27 |
+
COSYVOICE_ATTENTION_CLASSES,
|
28 |
+
COSYVOICE_ACTIVATION_CLASSES,
|
29 |
+
)
|
30 |
+
from cosyvoice.utils.mask import (subsequent_mask, make_pad_mask)
|
31 |
+
|
32 |
+
|
33 |
+
class TransformerDecoder(torch.nn.Module):
|
34 |
+
"""Base class of Transfomer decoder module.
|
35 |
+
Args:
|
36 |
+
vocab_size: output dim
|
37 |
+
encoder_output_size: dimension of attention
|
38 |
+
attention_heads: the number of heads of multi head attention
|
39 |
+
linear_units: the hidden units number of position-wise feedforward
|
40 |
+
num_blocks: the number of decoder blocks
|
41 |
+
dropout_rate: dropout rate
|
42 |
+
self_attention_dropout_rate: dropout rate for attention
|
43 |
+
input_layer: input layer type
|
44 |
+
use_output_layer: whether to use output layer
|
45 |
+
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
46 |
+
normalize_before:
|
47 |
+
True: use layer_norm before each sub-block of a layer.
|
48 |
+
False: use layer_norm after each sub-block of a layer.
|
49 |
+
src_attention: if false, encoder-decoder cross attention is not
|
50 |
+
applied, such as CIF model
|
51 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
52 |
+
gradient_checkpointing: rerunning a forward-pass segment for each
|
53 |
+
checkpointed segment during backward.
|
54 |
+
tie_word_embedding: Tie or clone module weights depending of whether we are
|
55 |
+
using TorchScript or not
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
vocab_size: int,
|
61 |
+
encoder_output_size: int,
|
62 |
+
attention_heads: int = 4,
|
63 |
+
linear_units: int = 2048,
|
64 |
+
num_blocks: int = 6,
|
65 |
+
dropout_rate: float = 0.1,
|
66 |
+
positional_dropout_rate: float = 0.1,
|
67 |
+
self_attention_dropout_rate: float = 0.0,
|
68 |
+
src_attention_dropout_rate: float = 0.0,
|
69 |
+
input_layer: str = "embed",
|
70 |
+
use_output_layer: bool = True,
|
71 |
+
normalize_before: bool = True,
|
72 |
+
src_attention: bool = True,
|
73 |
+
key_bias: bool = True,
|
74 |
+
activation_type: str = "relu",
|
75 |
+
gradient_checkpointing: bool = False,
|
76 |
+
tie_word_embedding: bool = False,
|
77 |
+
):
|
78 |
+
super().__init__()
|
79 |
+
attention_dim = encoder_output_size
|
80 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
81 |
+
|
82 |
+
self.embed = torch.nn.Sequential(
|
83 |
+
torch.nn.Identity() if input_layer == "no_pos" else
|
84 |
+
torch.nn.Embedding(vocab_size, attention_dim),
|
85 |
+
COSYVOICE_EMB_CLASSES[input_layer](attention_dim,
|
86 |
+
positional_dropout_rate),
|
87 |
+
)
|
88 |
+
|
89 |
+
self.normalize_before = normalize_before
|
90 |
+
self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5)
|
91 |
+
self.use_output_layer = use_output_layer
|
92 |
+
if use_output_layer:
|
93 |
+
self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
|
94 |
+
else:
|
95 |
+
self.output_layer = torch.nn.Identity()
|
96 |
+
self.num_blocks = num_blocks
|
97 |
+
self.decoders = torch.nn.ModuleList([
|
98 |
+
DecoderLayer(
|
99 |
+
attention_dim,
|
100 |
+
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
101 |
+
attention_heads, attention_dim,
|
102 |
+
self_attention_dropout_rate, key_bias),
|
103 |
+
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
104 |
+
attention_heads, attention_dim, src_attention_dropout_rate,
|
105 |
+
key_bias) if src_attention else None,
|
106 |
+
PositionwiseFeedForward(attention_dim, linear_units,
|
107 |
+
dropout_rate, activation),
|
108 |
+
dropout_rate,
|
109 |
+
normalize_before,
|
110 |
+
) for _ in range(self.num_blocks)
|
111 |
+
])
|
112 |
+
|
113 |
+
self.gradient_checkpointing = gradient_checkpointing
|
114 |
+
self.tie_word_embedding = tie_word_embedding
|
115 |
+
|
116 |
+
def forward(
|
117 |
+
self,
|
118 |
+
memory: torch.Tensor,
|
119 |
+
memory_mask: torch.Tensor,
|
120 |
+
ys_in_pad: torch.Tensor,
|
121 |
+
ys_in_lens: torch.Tensor,
|
122 |
+
r_ys_in_pad: torch.Tensor = torch.empty(0),
|
123 |
+
reverse_weight: float = 0.0,
|
124 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
125 |
+
"""Forward decoder.
|
126 |
+
Args:
|
127 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
128 |
+
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
129 |
+
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
130 |
+
ys_in_lens: input lengths of this batch (batch)
|
131 |
+
r_ys_in_pad: not used in transformer decoder, in order to unify api
|
132 |
+
with bidirectional decoder
|
133 |
+
reverse_weight: not used in transformer decoder, in order to unify
|
134 |
+
api with bidirectional decode
|
135 |
+
Returns:
|
136 |
+
(tuple): tuple containing:
|
137 |
+
x: decoded token score before softmax (batch, maxlen_out,
|
138 |
+
vocab_size) if use_output_layer is True,
|
139 |
+
torch.tensor(0.0), in order to unify api with bidirectional decoder
|
140 |
+
olens: (batch, )
|
141 |
+
NOTE(xcsong):
|
142 |
+
We pass the `__call__` method of the modules instead of `forward` to the
|
143 |
+
checkpointing API because `__call__` attaches all the hooks of the module.
|
144 |
+
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
145 |
+
"""
|
146 |
+
tgt = ys_in_pad
|
147 |
+
maxlen = tgt.size(1)
|
148 |
+
# tgt_mask: (B, 1, L)
|
149 |
+
tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1)
|
150 |
+
tgt_mask = tgt_mask.to(tgt.device)
|
151 |
+
# m: (1, L, L)
|
152 |
+
m = subsequent_mask(tgt_mask.size(-1),
|
153 |
+
device=tgt_mask.device).unsqueeze(0)
|
154 |
+
# tgt_mask: (B, L, L)
|
155 |
+
tgt_mask = tgt_mask & m
|
156 |
+
x, _ = self.embed(tgt)
|
157 |
+
if self.gradient_checkpointing and self.training:
|
158 |
+
x = self.forward_layers_checkpointed(x, tgt_mask, memory,
|
159 |
+
memory_mask)
|
160 |
+
else:
|
161 |
+
x = self.forward_layers(x, tgt_mask, memory, memory_mask)
|
162 |
+
if self.normalize_before:
|
163 |
+
x = self.after_norm(x)
|
164 |
+
if self.use_output_layer:
|
165 |
+
x = self.output_layer(x)
|
166 |
+
olens = tgt_mask.sum(1)
|
167 |
+
return x, torch.tensor(0.0), olens
|
168 |
+
|
169 |
+
def forward_layers(self, x: torch.Tensor, tgt_mask: torch.Tensor,
|
170 |
+
memory: torch.Tensor,
|
171 |
+
memory_mask: torch.Tensor) -> torch.Tensor:
|
172 |
+
for layer in self.decoders:
|
173 |
+
x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory,
|
174 |
+
memory_mask)
|
175 |
+
return x
|
176 |
+
|
177 |
+
@torch.jit.unused
|
178 |
+
def forward_layers_checkpointed(self, x: torch.Tensor,
|
179 |
+
tgt_mask: torch.Tensor,
|
180 |
+
memory: torch.Tensor,
|
181 |
+
memory_mask: torch.Tensor) -> torch.Tensor:
|
182 |
+
for layer in self.decoders:
|
183 |
+
x, tgt_mask, memory, memory_mask = ckpt.checkpoint(
|
184 |
+
layer.__call__, x, tgt_mask, memory, memory_mask)
|
185 |
+
return x
|
186 |
+
|
187 |
+
def forward_one_step(
|
188 |
+
self,
|
189 |
+
memory: torch.Tensor,
|
190 |
+
memory_mask: torch.Tensor,
|
191 |
+
tgt: torch.Tensor,
|
192 |
+
tgt_mask: torch.Tensor,
|
193 |
+
cache: Optional[List[torch.Tensor]] = None,
|
194 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
195 |
+
"""Forward one step.
|
196 |
+
This is only used for decoding.
|
197 |
+
Args:
|
198 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
199 |
+
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
200 |
+
tgt: input token ids, int64 (batch, maxlen_out)
|
201 |
+
tgt_mask: input token mask, (batch, maxlen_out)
|
202 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
203 |
+
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
204 |
+
cache: cached output list of (batch, max_time_out-1, size)
|
205 |
+
Returns:
|
206 |
+
y, cache: NN output value and cache per `self.decoders`.
|
207 |
+
y.shape` is (batch, maxlen_out, token)
|
208 |
+
"""
|
209 |
+
x, _ = self.embed(tgt)
|
210 |
+
new_cache = []
|
211 |
+
for i, decoder in enumerate(self.decoders):
|
212 |
+
if cache is None:
|
213 |
+
c = None
|
214 |
+
else:
|
215 |
+
c = cache[i]
|
216 |
+
x, tgt_mask, memory, memory_mask = decoder(x,
|
217 |
+
tgt_mask,
|
218 |
+
memory,
|
219 |
+
memory_mask,
|
220 |
+
cache=c)
|
221 |
+
new_cache.append(x)
|
222 |
+
if self.normalize_before:
|
223 |
+
y = self.after_norm(x[:, -1])
|
224 |
+
else:
|
225 |
+
y = x[:, -1]
|
226 |
+
if self.use_output_layer:
|
227 |
+
y = torch.log_softmax(self.output_layer(y), dim=-1)
|
228 |
+
return y, new_cache
|
229 |
+
|
230 |
+
def tie_or_clone_weights(self, jit_mode: bool = True):
|
231 |
+
"""Tie or clone module weights (between word_emb and output_layer)
|
232 |
+
depending of whether we are using TorchScript or not"""
|
233 |
+
if not self.use_output_layer:
|
234 |
+
return
|
235 |
+
if jit_mode:
|
236 |
+
logging.info("clone emb.weight to output.weight")
|
237 |
+
self.output_layer.weight = torch.nn.Parameter(
|
238 |
+
self.embed[0].weight.clone())
|
239 |
+
else:
|
240 |
+
logging.info("tie emb.weight with output.weight")
|
241 |
+
self.output_layer.weight = self.embed[0].weight
|
242 |
+
|
243 |
+
if getattr(self.output_layer, "bias", None) is not None:
|
244 |
+
self.output_layer.bias.data = torch.nn.functional.pad(
|
245 |
+
self.output_layer.bias.data,
|
246 |
+
(
|
247 |
+
0,
|
248 |
+
self.output_layer.weight.shape[0] -
|
249 |
+
self.output_layer.bias.shape[0],
|
250 |
+
),
|
251 |
+
"constant",
|
252 |
+
0,
|
253 |
+
)
|
254 |
+
|
255 |
+
|
256 |
+
class BiTransformerDecoder(torch.nn.Module):
|
257 |
+
"""Base class of Transfomer decoder module.
|
258 |
+
Args:
|
259 |
+
vocab_size: output dim
|
260 |
+
encoder_output_size: dimension of attention
|
261 |
+
attention_heads: the number of heads of multi head attention
|
262 |
+
linear_units: the hidden units number of position-wise feedforward
|
263 |
+
num_blocks: the number of decoder blocks
|
264 |
+
r_num_blocks: the number of right to left decoder blocks
|
265 |
+
dropout_rate: dropout rate
|
266 |
+
self_attention_dropout_rate: dropout rate for attention
|
267 |
+
input_layer: input layer type
|
268 |
+
use_output_layer: whether to use output layer
|
269 |
+
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
270 |
+
normalize_before:
|
271 |
+
True: use layer_norm before each sub-block of a layer.
|
272 |
+
False: use layer_norm after each sub-block of a layer.
|
273 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
274 |
+
"""
|
275 |
+
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
vocab_size: int,
|
279 |
+
encoder_output_size: int,
|
280 |
+
attention_heads: int = 4,
|
281 |
+
linear_units: int = 2048,
|
282 |
+
num_blocks: int = 6,
|
283 |
+
r_num_blocks: int = 0,
|
284 |
+
dropout_rate: float = 0.1,
|
285 |
+
positional_dropout_rate: float = 0.1,
|
286 |
+
self_attention_dropout_rate: float = 0.0,
|
287 |
+
src_attention_dropout_rate: float = 0.0,
|
288 |
+
input_layer: str = "embed",
|
289 |
+
use_output_layer: bool = True,
|
290 |
+
normalize_before: bool = True,
|
291 |
+
key_bias: bool = True,
|
292 |
+
gradient_checkpointing: bool = False,
|
293 |
+
tie_word_embedding: bool = False,
|
294 |
+
):
|
295 |
+
|
296 |
+
super().__init__()
|
297 |
+
self.tie_word_embedding = tie_word_embedding
|
298 |
+
self.left_decoder = TransformerDecoder(
|
299 |
+
vocab_size,
|
300 |
+
encoder_output_size,
|
301 |
+
attention_heads,
|
302 |
+
linear_units,
|
303 |
+
num_blocks,
|
304 |
+
dropout_rate,
|
305 |
+
positional_dropout_rate,
|
306 |
+
self_attention_dropout_rate,
|
307 |
+
src_attention_dropout_rate,
|
308 |
+
input_layer,
|
309 |
+
use_output_layer,
|
310 |
+
normalize_before,
|
311 |
+
key_bias=key_bias,
|
312 |
+
gradient_checkpointing=gradient_checkpointing,
|
313 |
+
tie_word_embedding=tie_word_embedding)
|
314 |
+
|
315 |
+
self.right_decoder = TransformerDecoder(
|
316 |
+
vocab_size,
|
317 |
+
encoder_output_size,
|
318 |
+
attention_heads,
|
319 |
+
linear_units,
|
320 |
+
r_num_blocks,
|
321 |
+
dropout_rate,
|
322 |
+
positional_dropout_rate,
|
323 |
+
self_attention_dropout_rate,
|
324 |
+
src_attention_dropout_rate,
|
325 |
+
input_layer,
|
326 |
+
use_output_layer,
|
327 |
+
normalize_before,
|
328 |
+
key_bias=key_bias,
|
329 |
+
gradient_checkpointing=gradient_checkpointing,
|
330 |
+
tie_word_embedding=tie_word_embedding)
|
331 |
+
|
332 |
+
def forward(
|
333 |
+
self,
|
334 |
+
memory: torch.Tensor,
|
335 |
+
memory_mask: torch.Tensor,
|
336 |
+
ys_in_pad: torch.Tensor,
|
337 |
+
ys_in_lens: torch.Tensor,
|
338 |
+
r_ys_in_pad: torch.Tensor,
|
339 |
+
reverse_weight: float = 0.0,
|
340 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
341 |
+
"""Forward decoder.
|
342 |
+
Args:
|
343 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
344 |
+
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
345 |
+
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
346 |
+
ys_in_lens: input lengths of this batch (batch)
|
347 |
+
r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
|
348 |
+
used for right to left decoder
|
349 |
+
reverse_weight: used for right to left decoder
|
350 |
+
Returns:
|
351 |
+
(tuple): tuple containing:
|
352 |
+
x: decoded token score before softmax (batch, maxlen_out,
|
353 |
+
vocab_size) if use_output_layer is True,
|
354 |
+
r_x: x: decoded token score (right to left decoder)
|
355 |
+
before softmax (batch, maxlen_out, vocab_size)
|
356 |
+
if use_output_layer is True,
|
357 |
+
olens: (batch, )
|
358 |
+
"""
|
359 |
+
l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad,
|
360 |
+
ys_in_lens)
|
361 |
+
r_x = torch.tensor(0.0)
|
362 |
+
if reverse_weight > 0.0:
|
363 |
+
r_x, _, olens = self.right_decoder(memory, memory_mask,
|
364 |
+
r_ys_in_pad, ys_in_lens)
|
365 |
+
return l_x, r_x, olens
|
366 |
+
|
367 |
+
def forward_one_step(
|
368 |
+
self,
|
369 |
+
memory: torch.Tensor,
|
370 |
+
memory_mask: torch.Tensor,
|
371 |
+
tgt: torch.Tensor,
|
372 |
+
tgt_mask: torch.Tensor,
|
373 |
+
cache: Optional[List[torch.Tensor]] = None,
|
374 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
375 |
+
"""Forward one step.
|
376 |
+
This is only used for decoding.
|
377 |
+
Args:
|
378 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
379 |
+
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
380 |
+
tgt: input token ids, int64 (batch, maxlen_out)
|
381 |
+
tgt_mask: input token mask, (batch, maxlen_out)
|
382 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
383 |
+
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
384 |
+
cache: cached output list of (batch, max_time_out-1, size)
|
385 |
+
Returns:
|
386 |
+
y, cache: NN output value and cache per `self.decoders`.
|
387 |
+
y.shape` is (batch, maxlen_out, token)
|
388 |
+
"""
|
389 |
+
return self.left_decoder.forward_one_step(memory, memory_mask, tgt,
|
390 |
+
tgt_mask, cache)
|
391 |
+
|
392 |
+
def tie_or_clone_weights(self, jit_mode: bool = True):
|
393 |
+
"""Tie or clone module weights (between word_emb and output_layer)
|
394 |
+
depending of whether we are using TorchScript or not"""
|
395 |
+
self.left_decoder.tie_or_clone_weights(jit_mode)
|
396 |
+
self.right_decoder.tie_or_clone_weights(jit_mode)
|
cosyvoice/transformer/decoder_layer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Decoder self-attention layer definition."""
|
16 |
+
from typing import Optional, Tuple
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
|
22 |
+
class DecoderLayer(nn.Module):
|
23 |
+
"""Single decoder layer module.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
size (int): Input dimension.
|
27 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
28 |
+
`MultiHeadedAttention` instance can be used as the argument.
|
29 |
+
src_attn (torch.nn.Module): Inter-attention module instance.
|
30 |
+
`MultiHeadedAttention` instance can be used as the argument.
|
31 |
+
If `None` is passed, Inter-attention is not used, such as
|
32 |
+
CIF, GPT, and other decoder only model.
|
33 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
34 |
+
`PositionwiseFeedForward` instance can be used as the argument.
|
35 |
+
dropout_rate (float): Dropout rate.
|
36 |
+
normalize_before (bool):
|
37 |
+
True: use layer_norm before each sub-block.
|
38 |
+
False: to use layer_norm after each sub-block.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
size: int,
|
44 |
+
self_attn: nn.Module,
|
45 |
+
src_attn: Optional[nn.Module],
|
46 |
+
feed_forward: nn.Module,
|
47 |
+
dropout_rate: float,
|
48 |
+
normalize_before: bool = True,
|
49 |
+
):
|
50 |
+
"""Construct an DecoderLayer object."""
|
51 |
+
super().__init__()
|
52 |
+
self.size = size
|
53 |
+
self.self_attn = self_attn
|
54 |
+
self.src_attn = src_attn
|
55 |
+
self.feed_forward = feed_forward
|
56 |
+
self.norm1 = nn.LayerNorm(size, eps=1e-5)
|
57 |
+
self.norm2 = nn.LayerNorm(size, eps=1e-5)
|
58 |
+
self.norm3 = nn.LayerNorm(size, eps=1e-5)
|
59 |
+
self.dropout = nn.Dropout(dropout_rate)
|
60 |
+
self.normalize_before = normalize_before
|
61 |
+
|
62 |
+
def forward(
|
63 |
+
self,
|
64 |
+
tgt: torch.Tensor,
|
65 |
+
tgt_mask: torch.Tensor,
|
66 |
+
memory: torch.Tensor,
|
67 |
+
memory_mask: torch.Tensor,
|
68 |
+
cache: Optional[torch.Tensor] = None
|
69 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
70 |
+
"""Compute decoded features.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
|
74 |
+
tgt_mask (torch.Tensor): Mask for input tensor
|
75 |
+
(#batch, maxlen_out).
|
76 |
+
memory (torch.Tensor): Encoded memory
|
77 |
+
(#batch, maxlen_in, size).
|
78 |
+
memory_mask (torch.Tensor): Encoded memory mask
|
79 |
+
(#batch, maxlen_in).
|
80 |
+
cache (torch.Tensor): cached tensors.
|
81 |
+
(#batch, maxlen_out - 1, size).
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
torch.Tensor: Output tensor (#batch, maxlen_out, size).
|
85 |
+
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
|
86 |
+
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
|
87 |
+
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
|
88 |
+
|
89 |
+
"""
|
90 |
+
residual = tgt
|
91 |
+
if self.normalize_before:
|
92 |
+
tgt = self.norm1(tgt)
|
93 |
+
|
94 |
+
if cache is None:
|
95 |
+
tgt_q = tgt
|
96 |
+
tgt_q_mask = tgt_mask
|
97 |
+
else:
|
98 |
+
# compute only the last frame query keeping dim: max_time_out -> 1
|
99 |
+
assert cache.shape == (
|
100 |
+
tgt.shape[0],
|
101 |
+
tgt.shape[1] - 1,
|
102 |
+
self.size,
|
103 |
+
), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
|
104 |
+
tgt_q = tgt[:, -1:, :]
|
105 |
+
residual = residual[:, -1:, :]
|
106 |
+
tgt_q_mask = tgt_mask[:, -1:, :]
|
107 |
+
|
108 |
+
x = residual + self.dropout(
|
109 |
+
self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
|
110 |
+
if not self.normalize_before:
|
111 |
+
x = self.norm1(x)
|
112 |
+
|
113 |
+
if self.src_attn is not None:
|
114 |
+
residual = x
|
115 |
+
if self.normalize_before:
|
116 |
+
x = self.norm2(x)
|
117 |
+
x = residual + self.dropout(
|
118 |
+
self.src_attn(x, memory, memory, memory_mask)[0])
|
119 |
+
if not self.normalize_before:
|
120 |
+
x = self.norm2(x)
|
121 |
+
|
122 |
+
residual = x
|
123 |
+
if self.normalize_before:
|
124 |
+
x = self.norm3(x)
|
125 |
+
x = residual + self.dropout(self.feed_forward(x))
|
126 |
+
if not self.normalize_before:
|
127 |
+
x = self.norm3(x)
|
128 |
+
|
129 |
+
if cache is not None:
|
130 |
+
x = torch.cat([cache, x], dim=1)
|
131 |
+
|
132 |
+
return x, tgt_mask, memory, memory_mask
|
cosyvoice/transformer/embedding.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Positonal Encoding Module."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
|
26 |
+
class PositionalEncoding(torch.nn.Module):
|
27 |
+
"""Positional encoding.
|
28 |
+
|
29 |
+
:param int d_model: embedding dim
|
30 |
+
:param float dropout_rate: dropout rate
|
31 |
+
:param int max_len: maximum input length
|
32 |
+
|
33 |
+
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
|
34 |
+
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self,
|
38 |
+
d_model: int,
|
39 |
+
dropout_rate: float,
|
40 |
+
max_len: int = 5000,
|
41 |
+
reverse: bool = False):
|
42 |
+
"""Construct an PositionalEncoding object."""
|
43 |
+
super().__init__()
|
44 |
+
self.d_model = d_model
|
45 |
+
self.xscale = math.sqrt(self.d_model)
|
46 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
47 |
+
self.max_len = max_len
|
48 |
+
|
49 |
+
self.pe = torch.zeros(self.max_len, self.d_model)
|
50 |
+
position = torch.arange(0, self.max_len,
|
51 |
+
dtype=torch.float32).unsqueeze(1)
|
52 |
+
div_term = torch.exp(
|
53 |
+
torch.arange(0, self.d_model, 2, dtype=torch.float32) *
|
54 |
+
-(math.log(10000.0) / self.d_model))
|
55 |
+
self.pe[:, 0::2] = torch.sin(position * div_term)
|
56 |
+
self.pe[:, 1::2] = torch.cos(position * div_term)
|
57 |
+
self.pe = self.pe.unsqueeze(0)
|
58 |
+
|
59 |
+
def forward(self,
|
60 |
+
x: torch.Tensor,
|
61 |
+
offset: Union[int, torch.Tensor] = 0) \
|
62 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
63 |
+
"""Add positional encoding.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
x (torch.Tensor): Input. Its shape is (batch, time, ...)
|
67 |
+
offset (int, torch.tensor): position offset
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
|
71 |
+
torch.Tensor: for compatibility to RelPositionalEncoding
|
72 |
+
"""
|
73 |
+
|
74 |
+
self.pe = self.pe.to(x.device)
|
75 |
+
pos_emb = self.position_encoding(offset, x.size(1), False)
|
76 |
+
x = x * self.xscale + pos_emb
|
77 |
+
return self.dropout(x), self.dropout(pos_emb)
|
78 |
+
|
79 |
+
def position_encoding(self,
|
80 |
+
offset: Union[int, torch.Tensor],
|
81 |
+
size: int,
|
82 |
+
apply_dropout: bool = True) -> torch.Tensor:
|
83 |
+
""" For getting encoding in a streaming fashion
|
84 |
+
|
85 |
+
Attention!!!!!
|
86 |
+
we apply dropout only once at the whole utterance level in a none
|
87 |
+
streaming way, but will call this function several times with
|
88 |
+
increasing input size in a streaming scenario, so the dropout will
|
89 |
+
be applied several times.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
offset (int or torch.tensor): start offset
|
93 |
+
size (int): required size of position encoding
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
torch.Tensor: Corresponding encoding
|
97 |
+
"""
|
98 |
+
# How to subscript a Union type:
|
99 |
+
# https://github.com/pytorch/pytorch/issues/69434
|
100 |
+
if isinstance(offset, int):
|
101 |
+
assert offset + size <= self.max_len
|
102 |
+
pos_emb = self.pe[:, offset:offset + size]
|
103 |
+
elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar
|
104 |
+
assert offset + size <= self.max_len
|
105 |
+
pos_emb = self.pe[:, offset:offset + size]
|
106 |
+
else: # for batched streaming decoding on GPU
|
107 |
+
assert torch.max(offset) + size <= self.max_len
|
108 |
+
index = offset.unsqueeze(1) + \
|
109 |
+
torch.arange(0, size).to(offset.device) # B X T
|
110 |
+
flag = index > 0
|
111 |
+
# remove negative offset
|
112 |
+
index = index * flag
|
113 |
+
pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model
|
114 |
+
|
115 |
+
if apply_dropout:
|
116 |
+
pos_emb = self.dropout(pos_emb)
|
117 |
+
return pos_emb
|
118 |
+
|
119 |
+
|
120 |
+
class RelPositionalEncoding(PositionalEncoding):
|
121 |
+
"""Relative positional encoding module.
|
122 |
+
See : Appendix B in https://arxiv.org/abs/1901.02860
|
123 |
+
Args:
|
124 |
+
d_model (int): Embedding dimension.
|
125 |
+
dropout_rate (float): Dropout rate.
|
126 |
+
max_len (int): Maximum input length.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
|
130 |
+
"""Initialize class."""
|
131 |
+
super().__init__(d_model, dropout_rate, max_len, reverse=True)
|
132 |
+
|
133 |
+
def forward(self,
|
134 |
+
x: torch.Tensor,
|
135 |
+
offset: Union[int, torch.Tensor] = 0) \
|
136 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
137 |
+
"""Compute positional encoding.
|
138 |
+
Args:
|
139 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
140 |
+
Returns:
|
141 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
142 |
+
torch.Tensor: Positional embedding tensor (1, time, `*`).
|
143 |
+
"""
|
144 |
+
self.pe = self.pe.to(x.device)
|
145 |
+
x = x * self.xscale
|
146 |
+
pos_emb = self.position_encoding(offset, x.size(1), False)
|
147 |
+
return self.dropout(x), self.dropout(pos_emb)
|
148 |
+
|
149 |
+
|
150 |
+
class WhisperPositionalEncoding(PositionalEncoding):
|
151 |
+
""" Sinusoids position encoding used in openai-whisper.encoder
|
152 |
+
"""
|
153 |
+
|
154 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 1500):
|
155 |
+
super().__init__(d_model, dropout_rate, max_len)
|
156 |
+
self.xscale = 1.0
|
157 |
+
log_timescale_increment = np.log(10000) / (d_model // 2 - 1)
|
158 |
+
inv_timescales = torch.exp(-log_timescale_increment *
|
159 |
+
torch.arange(d_model // 2))
|
160 |
+
scaled_time = torch.arange(max_len)[:, np.newaxis] * \
|
161 |
+
inv_timescales[np.newaxis, :]
|
162 |
+
pe = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
163 |
+
delattr(self, "pe")
|
164 |
+
self.register_buffer("pe", pe.unsqueeze(0))
|
165 |
+
|
166 |
+
|
167 |
+
class LearnablePositionalEncoding(PositionalEncoding):
|
168 |
+
""" Learnable position encoding used in openai-whisper.decoder
|
169 |
+
"""
|
170 |
+
|
171 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 448):
|
172 |
+
super().__init__(d_model, dropout_rate, max_len)
|
173 |
+
# NOTE(xcsong): overwrite self.pe & self.xscale
|
174 |
+
self.pe = torch.nn.Parameter(torch.empty(1, max_len, d_model))
|
175 |
+
self.xscale = 1.0
|
176 |
+
|
177 |
+
|
178 |
+
class NoPositionalEncoding(torch.nn.Module):
|
179 |
+
""" No position encoding
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(self, d_model: int, dropout_rate: float):
|
183 |
+
super().__init__()
|
184 |
+
self.d_model = d_model
|
185 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
186 |
+
|
187 |
+
def forward(self,
|
188 |
+
x: torch.Tensor,
|
189 |
+
offset: Union[int, torch.Tensor] = 0) \
|
190 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
191 |
+
""" Just return zero vector for interface compatibility
|
192 |
+
"""
|
193 |
+
pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
|
194 |
+
return self.dropout(x), pos_emb
|
195 |
+
|
196 |
+
def position_encoding(self, offset: Union[int, torch.Tensor],
|
197 |
+
size: int) -> torch.Tensor:
|
198 |
+
return torch.zeros(1, size, self.d_model)
|
199 |
+
|
200 |
+
|
201 |
+
class EspnetRelPositionalEncoding(torch.nn.Module):
|
202 |
+
"""Relative positional encoding module (new implementation).
|
203 |
+
|
204 |
+
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
205 |
+
|
206 |
+
See : Appendix B in https://arxiv.org/abs/1901.02860
|
207 |
+
|
208 |
+
Args:
|
209 |
+
d_model (int): Embedding dimension.
|
210 |
+
dropout_rate (float): Dropout rate.
|
211 |
+
max_len (int): Maximum input length.
|
212 |
+
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
|
216 |
+
"""Construct an PositionalEncoding object."""
|
217 |
+
super(EspnetRelPositionalEncoding, self).__init__()
|
218 |
+
self.d_model = d_model
|
219 |
+
self.xscale = math.sqrt(self.d_model)
|
220 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
221 |
+
self.pe = None
|
222 |
+
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
223 |
+
|
224 |
+
def extend_pe(self, x: torch.Tensor):
|
225 |
+
"""Reset the positional encodings."""
|
226 |
+
if self.pe is not None:
|
227 |
+
# self.pe contains both positive and negative parts
|
228 |
+
# the length of self.pe is 2 * input_len - 1
|
229 |
+
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
230 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
231 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
232 |
+
return
|
233 |
+
# Suppose `i` means to the position of query vecotr and `j` means the
|
234 |
+
# position of key vector. We use position relative positions when keys
|
235 |
+
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
236 |
+
pe_positive = torch.zeros(x.size(1), self.d_model)
|
237 |
+
pe_negative = torch.zeros(x.size(1), self.d_model)
|
238 |
+
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
239 |
+
div_term = torch.exp(
|
240 |
+
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
241 |
+
* -(math.log(10000.0) / self.d_model)
|
242 |
+
)
|
243 |
+
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
244 |
+
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
245 |
+
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
246 |
+
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
247 |
+
|
248 |
+
# Reserve the order of positive indices and concat both positive and
|
249 |
+
# negative indices. This is used to support the shifting trick
|
250 |
+
# as in https://arxiv.org/abs/1901.02860
|
251 |
+
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
252 |
+
pe_negative = pe_negative[1:].unsqueeze(0)
|
253 |
+
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
254 |
+
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
255 |
+
|
256 |
+
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \
|
257 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
258 |
+
"""Add positional encoding.
|
259 |
+
|
260 |
+
Args:
|
261 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
262 |
+
|
263 |
+
Returns:
|
264 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
265 |
+
|
266 |
+
"""
|
267 |
+
self.extend_pe(x)
|
268 |
+
x = x * self.xscale
|
269 |
+
pos_emb = self.position_encoding(size=x.size(1), offset=offset)
|
270 |
+
return self.dropout(x), self.dropout(pos_emb)
|
271 |
+
|
272 |
+
def position_encoding(self,
|
273 |
+
offset: Union[int, torch.Tensor],
|
274 |
+
size: int) -> torch.Tensor:
|
275 |
+
""" For getting encoding in a streaming fashion
|
276 |
+
|
277 |
+
Attention!!!!!
|
278 |
+
we apply dropout only once at the whole utterance level in a none
|
279 |
+
streaming way, but will call this function several times with
|
280 |
+
increasing input size in a streaming scenario, so the dropout will
|
281 |
+
be applied several times.
|
282 |
+
|
283 |
+
Args:
|
284 |
+
offset (int or torch.tensor): start offset
|
285 |
+
size (int): required size of position encoding
|
286 |
+
|
287 |
+
Returns:
|
288 |
+
torch.Tensor: Corresponding encoding
|
289 |
+
"""
|
290 |
+
pos_emb = self.pe[
|
291 |
+
:,
|
292 |
+
self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size,
|
293 |
+
]
|
294 |
+
return pos_emb
|
cosyvoice/transformer/encoder.py
ADDED
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
2 |
+
# 2022 Xingchen Song ([email protected])
|
3 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
17 |
+
"""Encoder definition."""
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint as ckpt
|
22 |
+
|
23 |
+
from cosyvoice.transformer.convolution import ConvolutionModule
|
24 |
+
from cosyvoice.transformer.encoder_layer import TransformerEncoderLayer
|
25 |
+
from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
|
26 |
+
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
27 |
+
from cosyvoice.utils.class_utils import (
|
28 |
+
COSYVOICE_EMB_CLASSES,
|
29 |
+
COSYVOICE_SUBSAMPLE_CLASSES,
|
30 |
+
COSYVOICE_ATTENTION_CLASSES,
|
31 |
+
COSYVOICE_ACTIVATION_CLASSES,
|
32 |
+
)
|
33 |
+
from cosyvoice.utils.mask import make_pad_mask
|
34 |
+
from cosyvoice.utils.mask import add_optional_chunk_mask
|
35 |
+
|
36 |
+
|
37 |
+
class BaseEncoder(torch.nn.Module):
|
38 |
+
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
input_size: int,
|
42 |
+
output_size: int = 256,
|
43 |
+
attention_heads: int = 4,
|
44 |
+
linear_units: int = 2048,
|
45 |
+
num_blocks: int = 6,
|
46 |
+
dropout_rate: float = 0.1,
|
47 |
+
positional_dropout_rate: float = 0.1,
|
48 |
+
attention_dropout_rate: float = 0.0,
|
49 |
+
input_layer: str = "conv2d",
|
50 |
+
pos_enc_layer_type: str = "abs_pos",
|
51 |
+
normalize_before: bool = True,
|
52 |
+
static_chunk_size: int = 0,
|
53 |
+
use_dynamic_chunk: bool = False,
|
54 |
+
global_cmvn: torch.nn.Module = None,
|
55 |
+
use_dynamic_left_chunk: bool = False,
|
56 |
+
gradient_checkpointing: bool = False,
|
57 |
+
):
|
58 |
+
"""
|
59 |
+
Args:
|
60 |
+
input_size (int): input dim
|
61 |
+
output_size (int): dimension of attention
|
62 |
+
attention_heads (int): the number of heads of multi head attention
|
63 |
+
linear_units (int): the hidden units number of position-wise feed
|
64 |
+
forward
|
65 |
+
num_blocks (int): the number of decoder blocks
|
66 |
+
dropout_rate (float): dropout rate
|
67 |
+
attention_dropout_rate (float): dropout rate in attention
|
68 |
+
positional_dropout_rate (float): dropout rate after adding
|
69 |
+
positional encoding
|
70 |
+
input_layer (str): input layer type.
|
71 |
+
optional [linear, conv2d, conv2d6, conv2d8]
|
72 |
+
pos_enc_layer_type (str): Encoder positional encoding layer type.
|
73 |
+
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
|
74 |
+
normalize_before (bool):
|
75 |
+
True: use layer_norm before each sub-block of a layer.
|
76 |
+
False: use layer_norm after each sub-block of a layer.
|
77 |
+
static_chunk_size (int): chunk size for static chunk training and
|
78 |
+
decoding
|
79 |
+
use_dynamic_chunk (bool): whether use dynamic chunk size for
|
80 |
+
training or not, You can only use fixed chunk(chunk_size > 0)
|
81 |
+
or dyanmic chunk size(use_dynamic_chunk = True)
|
82 |
+
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
|
83 |
+
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
84 |
+
dynamic chunk training
|
85 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
86 |
+
gradient_checkpointing: rerunning a forward-pass segment for each
|
87 |
+
checkpointed segment during backward.
|
88 |
+
"""
|
89 |
+
super().__init__()
|
90 |
+
self._output_size = output_size
|
91 |
+
|
92 |
+
self.global_cmvn = global_cmvn
|
93 |
+
self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
94 |
+
input_size,
|
95 |
+
output_size,
|
96 |
+
dropout_rate,
|
97 |
+
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
98 |
+
positional_dropout_rate),
|
99 |
+
)
|
100 |
+
|
101 |
+
self.normalize_before = normalize_before
|
102 |
+
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
|
103 |
+
self.static_chunk_size = static_chunk_size
|
104 |
+
self.use_dynamic_chunk = use_dynamic_chunk
|
105 |
+
self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
106 |
+
self.gradient_checkpointing = gradient_checkpointing
|
107 |
+
|
108 |
+
def output_size(self) -> int:
|
109 |
+
return self._output_size
|
110 |
+
|
111 |
+
def forward(
|
112 |
+
self,
|
113 |
+
xs: torch.Tensor,
|
114 |
+
xs_lens: torch.Tensor,
|
115 |
+
decoding_chunk_size: int = 0,
|
116 |
+
num_decoding_left_chunks: int = -1,
|
117 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
118 |
+
"""Embed positions in tensor.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
xs: padded input tensor (B, T, D)
|
122 |
+
xs_lens: input length (B)
|
123 |
+
decoding_chunk_size: decoding chunk size for dynamic chunk
|
124 |
+
0: default for training, use random dynamic chunk.
|
125 |
+
<0: for decoding, use full chunk.
|
126 |
+
>0: for decoding, use fixed chunk size as set.
|
127 |
+
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
128 |
+
the chunk size is decoding_chunk_size.
|
129 |
+
>=0: use num_decoding_left_chunks
|
130 |
+
<0: use all left chunks
|
131 |
+
Returns:
|
132 |
+
encoder output tensor xs, and subsampled masks
|
133 |
+
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
134 |
+
masks: torch.Tensor batch padding mask after subsample
|
135 |
+
(B, 1, T' ~= T/subsample_rate)
|
136 |
+
NOTE(xcsong):
|
137 |
+
We pass the `__call__` method of the modules instead of `forward` to the
|
138 |
+
checkpointing API because `__call__` attaches all the hooks of the module.
|
139 |
+
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
140 |
+
"""
|
141 |
+
T = xs.size(1)
|
142 |
+
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
143 |
+
if self.global_cmvn is not None:
|
144 |
+
xs = self.global_cmvn(xs)
|
145 |
+
xs, pos_emb, masks = self.embed(xs, masks)
|
146 |
+
mask_pad = masks # (B, 1, T/subsample_rate)
|
147 |
+
chunk_masks = add_optional_chunk_mask(xs, masks,
|
148 |
+
self.use_dynamic_chunk,
|
149 |
+
self.use_dynamic_left_chunk,
|
150 |
+
decoding_chunk_size,
|
151 |
+
self.static_chunk_size,
|
152 |
+
num_decoding_left_chunks)
|
153 |
+
if self.gradient_checkpointing and self.training:
|
154 |
+
xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb,
|
155 |
+
mask_pad)
|
156 |
+
else:
|
157 |
+
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
158 |
+
if self.normalize_before:
|
159 |
+
xs = self.after_norm(xs)
|
160 |
+
# Here we assume the mask is not changed in encoder layers, so just
|
161 |
+
# return the masks before encoder layers, and the masks will be used
|
162 |
+
# for cross attention with decoder later
|
163 |
+
return xs, masks
|
164 |
+
|
165 |
+
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
166 |
+
pos_emb: torch.Tensor,
|
167 |
+
mask_pad: torch.Tensor) -> torch.Tensor:
|
168 |
+
for layer in self.encoders:
|
169 |
+
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
170 |
+
return xs
|
171 |
+
|
172 |
+
@torch.jit.unused
|
173 |
+
def forward_layers_checkpointed(self, xs: torch.Tensor,
|
174 |
+
chunk_masks: torch.Tensor,
|
175 |
+
pos_emb: torch.Tensor,
|
176 |
+
mask_pad: torch.Tensor) -> torch.Tensor:
|
177 |
+
for layer in self.encoders:
|
178 |
+
xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__, xs,
|
179 |
+
chunk_masks, pos_emb,
|
180 |
+
mask_pad)
|
181 |
+
return xs
|
182 |
+
|
183 |
+
@torch.jit.export
|
184 |
+
def forward_chunk(
|
185 |
+
self,
|
186 |
+
xs: torch.Tensor,
|
187 |
+
offset: int,
|
188 |
+
required_cache_size: int,
|
189 |
+
att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
190 |
+
cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
191 |
+
att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
192 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
193 |
+
""" Forward just one chunk
|
194 |
+
|
195 |
+
Args:
|
196 |
+
xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
|
197 |
+
where `time == (chunk_size - 1) * subsample_rate + \
|
198 |
+
subsample.right_context + 1`
|
199 |
+
offset (int): current offset in encoder output time stamp
|
200 |
+
required_cache_size (int): cache size required for next chunk
|
201 |
+
compuation
|
202 |
+
>=0: actual cache size
|
203 |
+
<0: means all history cache is required
|
204 |
+
att_cache (torch.Tensor): cache tensor for KEY & VALUE in
|
205 |
+
transformer/conformer attention, with shape
|
206 |
+
(elayers, head, cache_t1, d_k * 2), where
|
207 |
+
`head * d_k == hidden-dim` and
|
208 |
+
`cache_t1 == chunk_size * num_decoding_left_chunks`.
|
209 |
+
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
|
210 |
+
(elayers, b=1, hidden-dim, cache_t2), where
|
211 |
+
`cache_t2 == cnn.lorder - 1`
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
torch.Tensor: output of current input xs,
|
215 |
+
with shape (b=1, chunk_size, hidden-dim).
|
216 |
+
torch.Tensor: new attention cache required for next chunk, with
|
217 |
+
dynamic shape (elayers, head, ?, d_k * 2)
|
218 |
+
depending on required_cache_size.
|
219 |
+
torch.Tensor: new conformer cnn cache required for next chunk, with
|
220 |
+
same shape as the original cnn_cache.
|
221 |
+
|
222 |
+
"""
|
223 |
+
assert xs.size(0) == 1
|
224 |
+
# tmp_masks is just for interface compatibility
|
225 |
+
tmp_masks = torch.ones(1,
|
226 |
+
xs.size(1),
|
227 |
+
device=xs.device,
|
228 |
+
dtype=torch.bool)
|
229 |
+
tmp_masks = tmp_masks.unsqueeze(1)
|
230 |
+
if self.global_cmvn is not None:
|
231 |
+
xs = self.global_cmvn(xs)
|
232 |
+
# NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
|
233 |
+
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
|
234 |
+
# NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim)
|
235 |
+
elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
|
236 |
+
chunk_size = xs.size(1)
|
237 |
+
attention_key_size = cache_t1 + chunk_size
|
238 |
+
pos_emb = self.embed.position_encoding(offset=offset - cache_t1,
|
239 |
+
size=attention_key_size)
|
240 |
+
if required_cache_size < 0:
|
241 |
+
next_cache_start = 0
|
242 |
+
elif required_cache_size == 0:
|
243 |
+
next_cache_start = attention_key_size
|
244 |
+
else:
|
245 |
+
next_cache_start = max(attention_key_size - required_cache_size, 0)
|
246 |
+
r_att_cache = []
|
247 |
+
r_cnn_cache = []
|
248 |
+
for i, layer in enumerate(self.encoders):
|
249 |
+
# NOTE(xcsong): Before layer.forward
|
250 |
+
# shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
|
251 |
+
# shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2)
|
252 |
+
xs, _, new_att_cache, new_cnn_cache = layer(
|
253 |
+
xs,
|
254 |
+
att_mask,
|
255 |
+
pos_emb,
|
256 |
+
att_cache=att_cache[i:i + 1] if elayers > 0 else att_cache,
|
257 |
+
cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache)
|
258 |
+
# NOTE(xcsong): After layer.forward
|
259 |
+
# shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
|
260 |
+
# shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
|
261 |
+
r_att_cache.append(new_att_cache[:, :, next_cache_start:, :])
|
262 |
+
r_cnn_cache.append(new_cnn_cache.unsqueeze(0))
|
263 |
+
if self.normalize_before:
|
264 |
+
xs = self.after_norm(xs)
|
265 |
+
|
266 |
+
# NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
|
267 |
+
# ? may be larger than cache_t1, it depends on required_cache_size
|
268 |
+
r_att_cache = torch.cat(r_att_cache, dim=0)
|
269 |
+
# NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
|
270 |
+
r_cnn_cache = torch.cat(r_cnn_cache, dim=0)
|
271 |
+
|
272 |
+
return (xs, r_att_cache, r_cnn_cache)
|
273 |
+
|
274 |
+
@torch.jit.unused
|
275 |
+
def forward_chunk_by_chunk(
|
276 |
+
self,
|
277 |
+
xs: torch.Tensor,
|
278 |
+
decoding_chunk_size: int,
|
279 |
+
num_decoding_left_chunks: int = -1,
|
280 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
281 |
+
""" Forward input chunk by chunk with chunk_size like a streaming
|
282 |
+
fashion
|
283 |
+
|
284 |
+
Here we should pay special attention to computation cache in the
|
285 |
+
streaming style forward chunk by chunk. Three things should be taken
|
286 |
+
into account for computation in the current network:
|
287 |
+
1. transformer/conformer encoder layers output cache
|
288 |
+
2. convolution in conformer
|
289 |
+
3. convolution in subsampling
|
290 |
+
|
291 |
+
However, we don't implement subsampling cache for:
|
292 |
+
1. We can control subsampling module to output the right result by
|
293 |
+
overlapping input instead of cache left context, even though it
|
294 |
+
wastes some computation, but subsampling only takes a very
|
295 |
+
small fraction of computation in the whole model.
|
296 |
+
2. Typically, there are several covolution layers with subsampling
|
297 |
+
in subsampling module, it is tricky and complicated to do cache
|
298 |
+
with different convolution layers with different subsampling
|
299 |
+
rate.
|
300 |
+
3. Currently, nn.Sequential is used to stack all the convolution
|
301 |
+
layers in subsampling, we need to rewrite it to make it work
|
302 |
+
with cache, which is not preferred.
|
303 |
+
Args:
|
304 |
+
xs (torch.Tensor): (1, max_len, dim)
|
305 |
+
chunk_size (int): decoding chunk size
|
306 |
+
"""
|
307 |
+
assert decoding_chunk_size > 0
|
308 |
+
# The model is trained by static or dynamic chunk
|
309 |
+
assert self.static_chunk_size > 0 or self.use_dynamic_chunk
|
310 |
+
subsampling = self.embed.subsampling_rate
|
311 |
+
context = self.embed.right_context + 1 # Add current frame
|
312 |
+
stride = subsampling * decoding_chunk_size
|
313 |
+
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
314 |
+
num_frames = xs.size(1)
|
315 |
+
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
316 |
+
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
317 |
+
outputs = []
|
318 |
+
offset = 0
|
319 |
+
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
|
320 |
+
|
321 |
+
# Feed forward overlap input step by step
|
322 |
+
for cur in range(0, num_frames - context + 1, stride):
|
323 |
+
end = min(cur + decoding_window, num_frames)
|
324 |
+
chunk_xs = xs[:, cur:end, :]
|
325 |
+
(y, att_cache,
|
326 |
+
cnn_cache) = self.forward_chunk(chunk_xs, offset,
|
327 |
+
required_cache_size, att_cache,
|
328 |
+
cnn_cache)
|
329 |
+
outputs.append(y)
|
330 |
+
offset += y.size(1)
|
331 |
+
ys = torch.cat(outputs, 1)
|
332 |
+
masks = torch.ones((1, 1, ys.size(1)),
|
333 |
+
device=ys.device,
|
334 |
+
dtype=torch.bool)
|
335 |
+
return ys, masks
|
336 |
+
|
337 |
+
|
338 |
+
class TransformerEncoder(BaseEncoder):
|
339 |
+
"""Transformer encoder module."""
|
340 |
+
|
341 |
+
def __init__(
|
342 |
+
self,
|
343 |
+
input_size: int,
|
344 |
+
output_size: int = 256,
|
345 |
+
attention_heads: int = 4,
|
346 |
+
linear_units: int = 2048,
|
347 |
+
num_blocks: int = 6,
|
348 |
+
dropout_rate: float = 0.1,
|
349 |
+
positional_dropout_rate: float = 0.1,
|
350 |
+
attention_dropout_rate: float = 0.0,
|
351 |
+
input_layer: str = "conv2d",
|
352 |
+
pos_enc_layer_type: str = "abs_pos",
|
353 |
+
normalize_before: bool = True,
|
354 |
+
static_chunk_size: int = 0,
|
355 |
+
use_dynamic_chunk: bool = False,
|
356 |
+
global_cmvn: torch.nn.Module = None,
|
357 |
+
use_dynamic_left_chunk: bool = False,
|
358 |
+
key_bias: bool = True,
|
359 |
+
selfattention_layer_type: str = "selfattn",
|
360 |
+
activation_type: str = "relu",
|
361 |
+
gradient_checkpointing: bool = False,
|
362 |
+
):
|
363 |
+
""" Construct TransformerEncoder
|
364 |
+
|
365 |
+
See Encoder for the meaning of each parameter.
|
366 |
+
"""
|
367 |
+
super().__init__(input_size, output_size, attention_heads,
|
368 |
+
linear_units, num_blocks, dropout_rate,
|
369 |
+
positional_dropout_rate, attention_dropout_rate,
|
370 |
+
input_layer, pos_enc_layer_type, normalize_before,
|
371 |
+
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
372 |
+
use_dynamic_left_chunk, gradient_checkpointing)
|
373 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
374 |
+
self.encoders = torch.nn.ModuleList([
|
375 |
+
TransformerEncoderLayer(
|
376 |
+
output_size,
|
377 |
+
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](attention_heads,
|
378 |
+
output_size,
|
379 |
+
attention_dropout_rate,
|
380 |
+
key_bias),
|
381 |
+
PositionwiseFeedForward(output_size, linear_units,
|
382 |
+
dropout_rate, activation),
|
383 |
+
dropout_rate, normalize_before) for _ in range(num_blocks)
|
384 |
+
])
|
385 |
+
|
386 |
+
|
387 |
+
class ConformerEncoder(BaseEncoder):
|
388 |
+
"""Conformer encoder module."""
|
389 |
+
|
390 |
+
def __init__(
|
391 |
+
self,
|
392 |
+
input_size: int,
|
393 |
+
output_size: int = 256,
|
394 |
+
attention_heads: int = 4,
|
395 |
+
linear_units: int = 2048,
|
396 |
+
num_blocks: int = 6,
|
397 |
+
dropout_rate: float = 0.1,
|
398 |
+
positional_dropout_rate: float = 0.1,
|
399 |
+
attention_dropout_rate: float = 0.0,
|
400 |
+
input_layer: str = "conv2d",
|
401 |
+
pos_enc_layer_type: str = "rel_pos",
|
402 |
+
normalize_before: bool = True,
|
403 |
+
static_chunk_size: int = 0,
|
404 |
+
use_dynamic_chunk: bool = False,
|
405 |
+
global_cmvn: torch.nn.Module = None,
|
406 |
+
use_dynamic_left_chunk: bool = False,
|
407 |
+
positionwise_conv_kernel_size: int = 1,
|
408 |
+
macaron_style: bool = True,
|
409 |
+
selfattention_layer_type: str = "rel_selfattn",
|
410 |
+
activation_type: str = "swish",
|
411 |
+
use_cnn_module: bool = True,
|
412 |
+
cnn_module_kernel: int = 15,
|
413 |
+
causal: bool = False,
|
414 |
+
cnn_module_norm: str = "batch_norm",
|
415 |
+
key_bias: bool = True,
|
416 |
+
gradient_checkpointing: bool = False,
|
417 |
+
):
|
418 |
+
"""Construct ConformerEncoder
|
419 |
+
|
420 |
+
Args:
|
421 |
+
input_size to use_dynamic_chunk, see in BaseEncoder
|
422 |
+
positionwise_conv_kernel_size (int): Kernel size of positionwise
|
423 |
+
conv1d layer.
|
424 |
+
macaron_style (bool): Whether to use macaron style for
|
425 |
+
positionwise layer.
|
426 |
+
selfattention_layer_type (str): Encoder attention layer type,
|
427 |
+
the parameter has no effect now, it's just for configure
|
428 |
+
compatibility.
|
429 |
+
activation_type (str): Encoder activation function type.
|
430 |
+
use_cnn_module (bool): Whether to use convolution module.
|
431 |
+
cnn_module_kernel (int): Kernel size of convolution module.
|
432 |
+
causal (bool): whether to use causal convolution or not.
|
433 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
434 |
+
"""
|
435 |
+
super().__init__(input_size, output_size, attention_heads,
|
436 |
+
linear_units, num_blocks, dropout_rate,
|
437 |
+
positional_dropout_rate, attention_dropout_rate,
|
438 |
+
input_layer, pos_enc_layer_type, normalize_before,
|
439 |
+
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
440 |
+
use_dynamic_left_chunk, gradient_checkpointing)
|
441 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
442 |
+
|
443 |
+
# self-attention module definition
|
444 |
+
encoder_selfattn_layer_args = (
|
445 |
+
attention_heads,
|
446 |
+
output_size,
|
447 |
+
attention_dropout_rate,
|
448 |
+
key_bias,
|
449 |
+
)
|
450 |
+
# feed-forward module definition
|
451 |
+
positionwise_layer_args = (
|
452 |
+
output_size,
|
453 |
+
linear_units,
|
454 |
+
dropout_rate,
|
455 |
+
activation,
|
456 |
+
)
|
457 |
+
# convolution module definition
|
458 |
+
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
459 |
+
cnn_module_norm, causal)
|
460 |
+
|
461 |
+
self.encoders = torch.nn.ModuleList([
|
462 |
+
ConformerEncoderLayer(
|
463 |
+
output_size,
|
464 |
+
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
465 |
+
*encoder_selfattn_layer_args),
|
466 |
+
PositionwiseFeedForward(*positionwise_layer_args),
|
467 |
+
PositionwiseFeedForward(
|
468 |
+
*positionwise_layer_args) if macaron_style else None,
|
469 |
+
ConvolutionModule(
|
470 |
+
*convolution_layer_args) if use_cnn_module else None,
|
471 |
+
dropout_rate,
|
472 |
+
normalize_before,
|
473 |
+
) for _ in range(num_blocks)
|
474 |
+
])
|
cosyvoice/transformer/encoder_layer.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
2 |
+
# 2022 Xingchen Song ([email protected])
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Encoder self-attention layer definition."""
|
17 |
+
|
18 |
+
from typing import Optional, Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
|
23 |
+
|
24 |
+
class TransformerEncoderLayer(nn.Module):
|
25 |
+
"""Encoder layer module.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
size (int): Input dimension.
|
29 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
30 |
+
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
31 |
+
instance can be used as the argument.
|
32 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
33 |
+
`PositionwiseFeedForward`, instance can be used as the argument.
|
34 |
+
dropout_rate (float): Dropout rate.
|
35 |
+
normalize_before (bool):
|
36 |
+
True: use layer_norm before each sub-block.
|
37 |
+
False: to use layer_norm after each sub-block.
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
size: int,
|
43 |
+
self_attn: torch.nn.Module,
|
44 |
+
feed_forward: torch.nn.Module,
|
45 |
+
dropout_rate: float,
|
46 |
+
normalize_before: bool = True,
|
47 |
+
):
|
48 |
+
"""Construct an EncoderLayer object."""
|
49 |
+
super().__init__()
|
50 |
+
self.self_attn = self_attn
|
51 |
+
self.feed_forward = feed_forward
|
52 |
+
self.norm1 = nn.LayerNorm(size, eps=1e-12)
|
53 |
+
self.norm2 = nn.LayerNorm(size, eps=1e-12)
|
54 |
+
self.dropout = nn.Dropout(dropout_rate)
|
55 |
+
self.size = size
|
56 |
+
self.normalize_before = normalize_before
|
57 |
+
|
58 |
+
def forward(
|
59 |
+
self,
|
60 |
+
x: torch.Tensor,
|
61 |
+
mask: torch.Tensor,
|
62 |
+
pos_emb: torch.Tensor,
|
63 |
+
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
64 |
+
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
65 |
+
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
66 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
67 |
+
"""Compute encoded features.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
x (torch.Tensor): (#batch, time, size)
|
71 |
+
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
|
72 |
+
(0, 0, 0) means fake mask.
|
73 |
+
pos_emb (torch.Tensor): just for interface compatibility
|
74 |
+
to ConformerEncoderLayer
|
75 |
+
mask_pad (torch.Tensor): does not used in transformer layer,
|
76 |
+
just for unified api with conformer.
|
77 |
+
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
|
78 |
+
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
|
79 |
+
cnn_cache (torch.Tensor): Convolution cache in conformer layer
|
80 |
+
(#batch=1, size, cache_t2), not used here, it's for interface
|
81 |
+
compatibility to ConformerEncoderLayer.
|
82 |
+
Returns:
|
83 |
+
torch.Tensor: Output tensor (#batch, time, size).
|
84 |
+
torch.Tensor: Mask tensor (#batch, time, time).
|
85 |
+
torch.Tensor: att_cache tensor,
|
86 |
+
(#batch=1, head, cache_t1 + time, d_k * 2).
|
87 |
+
torch.Tensor: cnn_cahce tensor (#batch=1, size, cache_t2).
|
88 |
+
|
89 |
+
"""
|
90 |
+
residual = x
|
91 |
+
if self.normalize_before:
|
92 |
+
x = self.norm1(x)
|
93 |
+
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb=pos_emb, cache=att_cache)
|
94 |
+
x = residual + self.dropout(x_att)
|
95 |
+
if not self.normalize_before:
|
96 |
+
x = self.norm1(x)
|
97 |
+
|
98 |
+
residual = x
|
99 |
+
if self.normalize_before:
|
100 |
+
x = self.norm2(x)
|
101 |
+
x = residual + self.dropout(self.feed_forward(x))
|
102 |
+
if not self.normalize_before:
|
103 |
+
x = self.norm2(x)
|
104 |
+
|
105 |
+
fake_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
106 |
+
return x, mask, new_att_cache, fake_cnn_cache
|
107 |
+
|
108 |
+
|
109 |
+
class ConformerEncoderLayer(nn.Module):
|
110 |
+
"""Encoder layer module.
|
111 |
+
Args:
|
112 |
+
size (int): Input dimension.
|
113 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
114 |
+
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
115 |
+
instance can be used as the argument.
|
116 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
117 |
+
`PositionwiseFeedForward` instance can be used as the argument.
|
118 |
+
feed_forward_macaron (torch.nn.Module): Additional feed-forward module
|
119 |
+
instance.
|
120 |
+
`PositionwiseFeedForward` instance can be used as the argument.
|
121 |
+
conv_module (torch.nn.Module): Convolution module instance.
|
122 |
+
`ConvlutionModule` instance can be used as the argument.
|
123 |
+
dropout_rate (float): Dropout rate.
|
124 |
+
normalize_before (bool):
|
125 |
+
True: use layer_norm before each sub-block.
|
126 |
+
False: use layer_norm after each sub-block.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
size: int,
|
132 |
+
self_attn: torch.nn.Module,
|
133 |
+
feed_forward: Optional[nn.Module] = None,
|
134 |
+
feed_forward_macaron: Optional[nn.Module] = None,
|
135 |
+
conv_module: Optional[nn.Module] = None,
|
136 |
+
dropout_rate: float = 0.1,
|
137 |
+
normalize_before: bool = True,
|
138 |
+
):
|
139 |
+
"""Construct an EncoderLayer object."""
|
140 |
+
super().__init__()
|
141 |
+
self.self_attn = self_attn
|
142 |
+
self.feed_forward = feed_forward
|
143 |
+
self.feed_forward_macaron = feed_forward_macaron
|
144 |
+
self.conv_module = conv_module
|
145 |
+
self.norm_ff = nn.LayerNorm(size, eps=1e-12) # for the FNN module
|
146 |
+
self.norm_mha = nn.LayerNorm(size, eps=1e-12) # for the MHA module
|
147 |
+
if feed_forward_macaron is not None:
|
148 |
+
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-12)
|
149 |
+
self.ff_scale = 0.5
|
150 |
+
else:
|
151 |
+
self.ff_scale = 1.0
|
152 |
+
if self.conv_module is not None:
|
153 |
+
self.norm_conv = nn.LayerNorm(size, eps=1e-12) # for the CNN module
|
154 |
+
self.norm_final = nn.LayerNorm(
|
155 |
+
size, eps=1e-12) # for the final output of the block
|
156 |
+
self.dropout = nn.Dropout(dropout_rate)
|
157 |
+
self.size = size
|
158 |
+
self.normalize_before = normalize_before
|
159 |
+
|
160 |
+
def forward(
|
161 |
+
self,
|
162 |
+
x: torch.Tensor,
|
163 |
+
mask: torch.Tensor,
|
164 |
+
pos_emb: torch.Tensor,
|
165 |
+
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
166 |
+
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
167 |
+
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
168 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
169 |
+
"""Compute encoded features.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
x (torch.Tensor): (#batch, time, size)
|
173 |
+
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
|
174 |
+
(0, 0, 0) means fake mask.
|
175 |
+
pos_emb (torch.Tensor): positional encoding, must not be None
|
176 |
+
for ConformerEncoderLayer.
|
177 |
+
mask_pad (torch.Tensor): batch padding mask used for conv module.
|
178 |
+
(#batch, 1,time), (0, 0, 0) means fake mask.
|
179 |
+
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
|
180 |
+
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
|
181 |
+
cnn_cache (torch.Tensor): Convolution cache in conformer layer
|
182 |
+
(#batch=1, size, cache_t2)
|
183 |
+
Returns:
|
184 |
+
torch.Tensor: Output tensor (#batch, time, size).
|
185 |
+
torch.Tensor: Mask tensor (#batch, time, time).
|
186 |
+
torch.Tensor: att_cache tensor,
|
187 |
+
(#batch=1, head, cache_t1 + time, d_k * 2).
|
188 |
+
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
|
189 |
+
"""
|
190 |
+
|
191 |
+
# whether to use macaron style
|
192 |
+
if self.feed_forward_macaron is not None:
|
193 |
+
residual = x
|
194 |
+
if self.normalize_before:
|
195 |
+
x = self.norm_ff_macaron(x)
|
196 |
+
x = residual + self.ff_scale * self.dropout(
|
197 |
+
self.feed_forward_macaron(x))
|
198 |
+
if not self.normalize_before:
|
199 |
+
x = self.norm_ff_macaron(x)
|
200 |
+
|
201 |
+
# multi-headed self-attention module
|
202 |
+
residual = x
|
203 |
+
if self.normalize_before:
|
204 |
+
x = self.norm_mha(x)
|
205 |
+
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb,
|
206 |
+
att_cache)
|
207 |
+
x = residual + self.dropout(x_att)
|
208 |
+
if not self.normalize_before:
|
209 |
+
x = self.norm_mha(x)
|
210 |
+
|
211 |
+
# convolution module
|
212 |
+
# Fake new cnn cache here, and then change it in conv_module
|
213 |
+
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
214 |
+
if self.conv_module is not None:
|
215 |
+
residual = x
|
216 |
+
if self.normalize_before:
|
217 |
+
x = self.norm_conv(x)
|
218 |
+
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
|
219 |
+
x = residual + self.dropout(x)
|
220 |
+
|
221 |
+
if not self.normalize_before:
|
222 |
+
x = self.norm_conv(x)
|
223 |
+
|
224 |
+
# feed forward module
|
225 |
+
residual = x
|
226 |
+
if self.normalize_before:
|
227 |
+
x = self.norm_ff(x)
|
228 |
+
|
229 |
+
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
|
230 |
+
if not self.normalize_before:
|
231 |
+
x = self.norm_ff(x)
|
232 |
+
|
233 |
+
if self.conv_module is not None:
|
234 |
+
x = self.norm_final(x)
|
235 |
+
|
236 |
+
return x, mask, new_att_cache, new_cnn_cache
|
cosyvoice/transformer/label_smoothing_loss.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Label smoothing module."""
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
|
21 |
+
class LabelSmoothingLoss(nn.Module):
|
22 |
+
"""Label-smoothing loss.
|
23 |
+
|
24 |
+
In a standard CE loss, the label's data distribution is:
|
25 |
+
[0,1,2] ->
|
26 |
+
[
|
27 |
+
[1.0, 0.0, 0.0],
|
28 |
+
[0.0, 1.0, 0.0],
|
29 |
+
[0.0, 0.0, 1.0],
|
30 |
+
]
|
31 |
+
|
32 |
+
In the smoothing version CE Loss,some probabilities
|
33 |
+
are taken from the true label prob (1.0) and are divided
|
34 |
+
among other labels.
|
35 |
+
|
36 |
+
e.g.
|
37 |
+
smoothing=0.1
|
38 |
+
[0,1,2] ->
|
39 |
+
[
|
40 |
+
[0.9, 0.05, 0.05],
|
41 |
+
[0.05, 0.9, 0.05],
|
42 |
+
[0.05, 0.05, 0.9],
|
43 |
+
]
|
44 |
+
|
45 |
+
Args:
|
46 |
+
size (int): the number of class
|
47 |
+
padding_idx (int): padding class id which will be ignored for loss
|
48 |
+
smoothing (float): smoothing rate (0.0 means the conventional CE)
|
49 |
+
normalize_length (bool):
|
50 |
+
normalize loss by sequence length if True
|
51 |
+
normalize loss by batch size if False
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self,
|
55 |
+
size: int,
|
56 |
+
padding_idx: int,
|
57 |
+
smoothing: float,
|
58 |
+
normalize_length: bool = False):
|
59 |
+
"""Construct an LabelSmoothingLoss object."""
|
60 |
+
super(LabelSmoothingLoss, self).__init__()
|
61 |
+
self.criterion = nn.KLDivLoss(reduction="none")
|
62 |
+
self.padding_idx = padding_idx
|
63 |
+
self.confidence = 1.0 - smoothing
|
64 |
+
self.smoothing = smoothing
|
65 |
+
self.size = size
|
66 |
+
self.normalize_length = normalize_length
|
67 |
+
|
68 |
+
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
69 |
+
"""Compute loss between x and target.
|
70 |
+
|
71 |
+
The model outputs and data labels tensors are flatten to
|
72 |
+
(batch*seqlen, class) shape and a mask is applied to the
|
73 |
+
padding part which should not be calculated for loss.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
x (torch.Tensor): prediction (batch, seqlen, class)
|
77 |
+
target (torch.Tensor):
|
78 |
+
target signal masked with self.padding_id (batch, seqlen)
|
79 |
+
Returns:
|
80 |
+
loss (torch.Tensor) : The KL loss, scalar float value
|
81 |
+
"""
|
82 |
+
assert x.size(2) == self.size
|
83 |
+
batch_size = x.size(0)
|
84 |
+
x = x.view(-1, self.size)
|
85 |
+
target = target.view(-1)
|
86 |
+
# use zeros_like instead of torch.no_grad() for true_dist,
|
87 |
+
# since no_grad() can not be exported by JIT
|
88 |
+
true_dist = torch.zeros_like(x)
|
89 |
+
true_dist.fill_(self.smoothing / (self.size - 1))
|
90 |
+
ignore = target == self.padding_idx # (B,)
|
91 |
+
total = len(target) - ignore.sum().item()
|
92 |
+
target = target.masked_fill(ignore, 0) # avoid -1 index
|
93 |
+
true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
|
94 |
+
kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
|
95 |
+
denom = total if self.normalize_length else batch_size
|
96 |
+
return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
|
cosyvoice/transformer/positionwise_feed_forward.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Positionwise feed forward layer definition."""
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
|
20 |
+
class PositionwiseFeedForward(torch.nn.Module):
|
21 |
+
"""Positionwise feed forward layer.
|
22 |
+
|
23 |
+
FeedForward are appied on each position of the sequence.
|
24 |
+
The output dim is same with the input dim.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
idim (int): Input dimenstion.
|
28 |
+
hidden_units (int): The number of hidden units.
|
29 |
+
dropout_rate (float): Dropout rate.
|
30 |
+
activation (torch.nn.Module): Activation function
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
idim: int,
|
36 |
+
hidden_units: int,
|
37 |
+
dropout_rate: float,
|
38 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
39 |
+
):
|
40 |
+
"""Construct a PositionwiseFeedForward object."""
|
41 |
+
super(PositionwiseFeedForward, self).__init__()
|
42 |
+
self.w_1 = torch.nn.Linear(idim, hidden_units)
|
43 |
+
self.activation = activation
|
44 |
+
self.dropout = torch.nn.Dropout(dropout_rate)
|
45 |
+
self.w_2 = torch.nn.Linear(hidden_units, idim)
|
46 |
+
|
47 |
+
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
48 |
+
"""Forward function.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
xs: input tensor (B, L, D)
|
52 |
+
Returns:
|
53 |
+
output tensor, (B, L, D)
|
54 |
+
"""
|
55 |
+
return self.w_2(self.dropout(self.activation(self.w_1(xs))))
|
56 |
+
|
57 |
+
|
58 |
+
class MoEFFNLayer(torch.nn.Module):
|
59 |
+
"""
|
60 |
+
Mixture of expert with Positionwise feed forward layer
|
61 |
+
See also figure 1 in https://arxiv.org/pdf/2305.15663.pdf
|
62 |
+
The output dim is same with the input dim.
|
63 |
+
|
64 |
+
Modified from https://github.com/Lightning-AI/lit-gpt/pull/823
|
65 |
+
https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219
|
66 |
+
Args:
|
67 |
+
n_expert: number of expert.
|
68 |
+
n_expert_per_token: The actual number of experts used for each frame
|
69 |
+
idim (int): Input dimenstion.
|
70 |
+
hidden_units (int): The number of hidden units.
|
71 |
+
dropout_rate (float): Dropout rate.
|
72 |
+
activation (torch.nn.Module): Activation function
|
73 |
+
"""
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
n_expert: int,
|
78 |
+
n_expert_per_token: int,
|
79 |
+
idim: int,
|
80 |
+
hidden_units: int,
|
81 |
+
dropout_rate: float,
|
82 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
83 |
+
):
|
84 |
+
super(MoEFFNLayer, self).__init__()
|
85 |
+
self.gate = torch.nn.Linear(idim, n_expert, bias=False)
|
86 |
+
self.experts = torch.nn.ModuleList(
|
87 |
+
PositionwiseFeedForward(idim, hidden_units, dropout_rate,
|
88 |
+
activation) for _ in range(n_expert))
|
89 |
+
self.n_expert_per_token = n_expert_per_token
|
90 |
+
|
91 |
+
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
92 |
+
"""Foward function.
|
93 |
+
Args:
|
94 |
+
xs: input tensor (B, L, D)
|
95 |
+
Returns:
|
96 |
+
output tensor, (B, L, D)
|
97 |
+
|
98 |
+
"""
|
99 |
+
B, L, D = xs.size(
|
100 |
+
) # batch size, sequence length, embedding dimension (idim)
|
101 |
+
xs = xs.view(-1, D) # (B*L, D)
|
102 |
+
router = self.gate(xs) # (B*L, n_expert)
|
103 |
+
logits, indices = torch.topk(
|
104 |
+
router, self.n_expert_per_token
|
105 |
+
) # probs:(B*L, n_expert), indices: (B*L, n_expert)
|
106 |
+
weights = torch.nn.functional.softmax(
|
107 |
+
logits, dim=1,
|
108 |
+
dtype=torch.float).to(dtype=xs.dtype) # (B*L, n_expert_per_token)
|
109 |
+
output = torch.zeros_like(xs) # (B*L, D)
|
110 |
+
for i, expert in enumerate(self.experts):
|
111 |
+
mask = indices == i
|
112 |
+
batch_idx, ith_expert = torch.where(mask)
|
113 |
+
output[batch_idx] += weights[batch_idx, ith_expert, None] * expert(
|
114 |
+
xs[batch_idx])
|
115 |
+
return output.view(B, L, D)
|
cosyvoice/transformer/subsampling.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Subsampling layer definition."""
|
17 |
+
|
18 |
+
from typing import Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
|
23 |
+
class BaseSubsampling(torch.nn.Module):
|
24 |
+
|
25 |
+
def __init__(self):
|
26 |
+
super().__init__()
|
27 |
+
self.right_context = 0
|
28 |
+
self.subsampling_rate = 1
|
29 |
+
|
30 |
+
def position_encoding(self, offset: Union[int, torch.Tensor],
|
31 |
+
size: int) -> torch.Tensor:
|
32 |
+
return self.pos_enc.position_encoding(offset, size)
|
33 |
+
|
34 |
+
|
35 |
+
class EmbedinigNoSubsampling(BaseSubsampling):
|
36 |
+
"""Embedding input without subsampling
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
40 |
+
pos_enc_class: torch.nn.Module):
|
41 |
+
super().__init__()
|
42 |
+
self.embed = torch.nn.Embedding(idim, odim)
|
43 |
+
self.pos_enc = pos_enc_class
|
44 |
+
|
45 |
+
def forward(
|
46 |
+
self,
|
47 |
+
x: torch.Tensor,
|
48 |
+
x_mask: torch.Tensor,
|
49 |
+
offset: Union[int, torch.Tensor] = 0
|
50 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
51 |
+
"""Input x.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
55 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
torch.Tensor: linear input tensor (#batch, time', odim),
|
59 |
+
where time' = time .
|
60 |
+
torch.Tensor: linear input mask (#batch, 1, time'),
|
61 |
+
where time' = time .
|
62 |
+
|
63 |
+
"""
|
64 |
+
x = self.embed(x)
|
65 |
+
x, pos_emb = self.pos_enc(x, offset)
|
66 |
+
return x, pos_emb, x_mask
|
67 |
+
|
68 |
+
|
69 |
+
class LinearNoSubsampling(BaseSubsampling):
|
70 |
+
"""Linear transform the input without subsampling
|
71 |
+
|
72 |
+
Args:
|
73 |
+
idim (int): Input dimension.
|
74 |
+
odim (int): Output dimension.
|
75 |
+
dropout_rate (float): Dropout rate.
|
76 |
+
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
80 |
+
pos_enc_class: torch.nn.Module):
|
81 |
+
"""Construct an linear object."""
|
82 |
+
super().__init__()
|
83 |
+
self.out = torch.nn.Sequential(
|
84 |
+
torch.nn.Linear(idim, odim),
|
85 |
+
torch.nn.LayerNorm(odim, eps=1e-5),
|
86 |
+
torch.nn.Dropout(dropout_rate),
|
87 |
+
)
|
88 |
+
self.pos_enc = pos_enc_class
|
89 |
+
self.right_context = 0
|
90 |
+
self.subsampling_rate = 1
|
91 |
+
|
92 |
+
def forward(
|
93 |
+
self,
|
94 |
+
x: torch.Tensor,
|
95 |
+
x_mask: torch.Tensor,
|
96 |
+
offset: Union[int, torch.Tensor] = 0
|
97 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
98 |
+
"""Input x.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
102 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
torch.Tensor: linear input tensor (#batch, time', odim),
|
106 |
+
where time' = time .
|
107 |
+
torch.Tensor: linear input mask (#batch, 1, time'),
|
108 |
+
where time' = time .
|
109 |
+
|
110 |
+
"""
|
111 |
+
x = self.out(x)
|
112 |
+
x, pos_emb = self.pos_enc(x, offset)
|
113 |
+
return x, pos_emb, x_mask
|
114 |
+
|
115 |
+
|
116 |
+
class Conv1dSubsampling2(BaseSubsampling):
|
117 |
+
"""Convolutional 1D subsampling (to 1/2 length).
|
118 |
+
It is designed for Whisper, ref:
|
119 |
+
https://github.com/openai/whisper/blob/main/whisper/model.py
|
120 |
+
|
121 |
+
Args:
|
122 |
+
idim (int): Input dimension.
|
123 |
+
odim (int): Output dimension.
|
124 |
+
dropout_rate (float): Dropout rate.
|
125 |
+
|
126 |
+
"""
|
127 |
+
|
128 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
129 |
+
pos_enc_class: torch.nn.Module):
|
130 |
+
"""Construct an Conv1dSubsampling2 object."""
|
131 |
+
super().__init__()
|
132 |
+
self.conv = torch.nn.Sequential(
|
133 |
+
torch.nn.Conv1d(idim, odim, kernel_size=3, padding=1),
|
134 |
+
torch.nn.GELU(),
|
135 |
+
torch.nn.Conv1d(odim, odim, kernel_size=3, stride=2, padding=1),
|
136 |
+
torch.nn.GELU(),
|
137 |
+
)
|
138 |
+
self.pos_enc = pos_enc_class
|
139 |
+
# The right context for every conv layer is computed by:
|
140 |
+
# (kernel_size - 1) * frame_rate_of_this_layer
|
141 |
+
self.subsampling_rate = 2
|
142 |
+
# 4 = (3 - 1) * 1 + (3 - 1) * 1
|
143 |
+
self.right_context = 4
|
144 |
+
|
145 |
+
def forward(
|
146 |
+
self,
|
147 |
+
x: torch.Tensor,
|
148 |
+
x_mask: torch.Tensor,
|
149 |
+
offset: Union[int, torch.Tensor] = 0
|
150 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
151 |
+
"""Subsample x.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
155 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
159 |
+
where time' = time // 2.
|
160 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
161 |
+
where time' = time // 2.
|
162 |
+
torch.Tensor: positional encoding
|
163 |
+
|
164 |
+
"""
|
165 |
+
time = x.size(1)
|
166 |
+
x = x.transpose(1, 2) # (b, f, t)
|
167 |
+
x = self.conv(x)
|
168 |
+
x = x.transpose(1, 2) # (b, t, f)
|
169 |
+
x, pos_emb = self.pos_enc(x, offset)
|
170 |
+
return x, pos_emb, x_mask[:, :, (time + 1) % 2::2]
|
171 |
+
|
172 |
+
|
173 |
+
class Conv2dSubsampling4(BaseSubsampling):
|
174 |
+
"""Convolutional 2D subsampling (to 1/4 length).
|
175 |
+
|
176 |
+
Args:
|
177 |
+
idim (int): Input dimension.
|
178 |
+
odim (int): Output dimension.
|
179 |
+
dropout_rate (float): Dropout rate.
|
180 |
+
|
181 |
+
"""
|
182 |
+
|
183 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
184 |
+
pos_enc_class: torch.nn.Module):
|
185 |
+
"""Construct an Conv2dSubsampling4 object."""
|
186 |
+
super().__init__()
|
187 |
+
self.conv = torch.nn.Sequential(
|
188 |
+
torch.nn.Conv2d(1, odim, 3, 2),
|
189 |
+
torch.nn.ReLU(),
|
190 |
+
torch.nn.Conv2d(odim, odim, 3, 2),
|
191 |
+
torch.nn.ReLU(),
|
192 |
+
)
|
193 |
+
self.out = torch.nn.Sequential(
|
194 |
+
torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
|
195 |
+
self.pos_enc = pos_enc_class
|
196 |
+
# The right context for every conv layer is computed by:
|
197 |
+
# (kernel_size - 1) * frame_rate_of_this_layer
|
198 |
+
self.subsampling_rate = 4
|
199 |
+
# 6 = (3 - 1) * 1 + (3 - 1) * 2
|
200 |
+
self.right_context = 6
|
201 |
+
|
202 |
+
def forward(
|
203 |
+
self,
|
204 |
+
x: torch.Tensor,
|
205 |
+
x_mask: torch.Tensor,
|
206 |
+
offset: Union[int, torch.Tensor] = 0
|
207 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
208 |
+
"""Subsample x.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
212 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
216 |
+
where time' = time // 4.
|
217 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
218 |
+
where time' = time // 4.
|
219 |
+
torch.Tensor: positional encoding
|
220 |
+
|
221 |
+
"""
|
222 |
+
x = x.unsqueeze(1) # (b, c=1, t, f)
|
223 |
+
x = self.conv(x)
|
224 |
+
b, c, t, f = x.size()
|
225 |
+
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
226 |
+
x, pos_emb = self.pos_enc(x, offset)
|
227 |
+
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2]
|
228 |
+
|
229 |
+
|
230 |
+
class Conv2dSubsampling6(BaseSubsampling):
|
231 |
+
"""Convolutional 2D subsampling (to 1/6 length).
|
232 |
+
Args:
|
233 |
+
idim (int): Input dimension.
|
234 |
+
odim (int): Output dimension.
|
235 |
+
dropout_rate (float): Dropout rate.
|
236 |
+
pos_enc (torch.nn.Module): Custom position encoding layer.
|
237 |
+
"""
|
238 |
+
|
239 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
240 |
+
pos_enc_class: torch.nn.Module):
|
241 |
+
"""Construct an Conv2dSubsampling6 object."""
|
242 |
+
super().__init__()
|
243 |
+
self.conv = torch.nn.Sequential(
|
244 |
+
torch.nn.Conv2d(1, odim, 3, 2),
|
245 |
+
torch.nn.ReLU(),
|
246 |
+
torch.nn.Conv2d(odim, odim, 5, 3),
|
247 |
+
torch.nn.ReLU(),
|
248 |
+
)
|
249 |
+
self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3),
|
250 |
+
odim)
|
251 |
+
self.pos_enc = pos_enc_class
|
252 |
+
# 10 = (3 - 1) * 1 + (5 - 1) * 2
|
253 |
+
self.subsampling_rate = 6
|
254 |
+
self.right_context = 10
|
255 |
+
|
256 |
+
def forward(
|
257 |
+
self,
|
258 |
+
x: torch.Tensor,
|
259 |
+
x_mask: torch.Tensor,
|
260 |
+
offset: Union[int, torch.Tensor] = 0
|
261 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
262 |
+
"""Subsample x.
|
263 |
+
Args:
|
264 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
265 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
266 |
+
|
267 |
+
Returns:
|
268 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
269 |
+
where time' = time // 6.
|
270 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
271 |
+
where time' = time // 6.
|
272 |
+
torch.Tensor: positional encoding
|
273 |
+
"""
|
274 |
+
x = x.unsqueeze(1) # (b, c, t, f)
|
275 |
+
x = self.conv(x)
|
276 |
+
b, c, t, f = x.size()
|
277 |
+
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
278 |
+
x, pos_emb = self.pos_enc(x, offset)
|
279 |
+
return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3]
|
280 |
+
|
281 |
+
|
282 |
+
class Conv2dSubsampling8(BaseSubsampling):
|
283 |
+
"""Convolutional 2D subsampling (to 1/8 length).
|
284 |
+
|
285 |
+
Args:
|
286 |
+
idim (int): Input dimension.
|
287 |
+
odim (int): Output dimension.
|
288 |
+
dropout_rate (float): Dropout rate.
|
289 |
+
|
290 |
+
"""
|
291 |
+
|
292 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
293 |
+
pos_enc_class: torch.nn.Module):
|
294 |
+
"""Construct an Conv2dSubsampling8 object."""
|
295 |
+
super().__init__()
|
296 |
+
self.conv = torch.nn.Sequential(
|
297 |
+
torch.nn.Conv2d(1, odim, 3, 2),
|
298 |
+
torch.nn.ReLU(),
|
299 |
+
torch.nn.Conv2d(odim, odim, 3, 2),
|
300 |
+
torch.nn.ReLU(),
|
301 |
+
torch.nn.Conv2d(odim, odim, 3, 2),
|
302 |
+
torch.nn.ReLU(),
|
303 |
+
)
|
304 |
+
self.linear = torch.nn.Linear(
|
305 |
+
odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim)
|
306 |
+
self.pos_enc = pos_enc_class
|
307 |
+
self.subsampling_rate = 8
|
308 |
+
# 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4
|
309 |
+
self.right_context = 14
|
310 |
+
|
311 |
+
def forward(
|
312 |
+
self,
|
313 |
+
x: torch.Tensor,
|
314 |
+
x_mask: torch.Tensor,
|
315 |
+
offset: Union[int, torch.Tensor] = 0
|
316 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
317 |
+
"""Subsample x.
|
318 |
+
|
319 |
+
Args:
|
320 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
321 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
325 |
+
where time' = time // 8.
|
326 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
327 |
+
where time' = time // 8.
|
328 |
+
torch.Tensor: positional encoding
|
329 |
+
"""
|
330 |
+
x = x.unsqueeze(1) # (b, c, t, f)
|
331 |
+
x = self.conv(x)
|
332 |
+
b, c, t, f = x.size()
|
333 |
+
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
334 |
+
x, pos_emb = self.pos_enc(x, offset)
|
335 |
+
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2]
|
336 |
+
|
337 |
+
|
338 |
+
class LegacyLinearNoSubsampling(BaseSubsampling):
|
339 |
+
"""Linear transform the input without subsampling
|
340 |
+
|
341 |
+
Args:
|
342 |
+
idim (int): Input dimension.
|
343 |
+
odim (int): Output dimension.
|
344 |
+
dropout_rate (float): Dropout rate.
|
345 |
+
|
346 |
+
"""
|
347 |
+
|
348 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
349 |
+
pos_enc_class: torch.nn.Module):
|
350 |
+
"""Construct an linear object."""
|
351 |
+
super().__init__()
|
352 |
+
self.out = torch.nn.Sequential(
|
353 |
+
torch.nn.Linear(idim, odim),
|
354 |
+
torch.nn.LayerNorm(odim, eps=1e-5),
|
355 |
+
torch.nn.Dropout(dropout_rate),
|
356 |
+
torch.nn.ReLU(),
|
357 |
+
)
|
358 |
+
self.pos_enc = pos_enc_class
|
359 |
+
self.right_context = 0
|
360 |
+
self.subsampling_rate = 1
|
361 |
+
|
362 |
+
def forward(
|
363 |
+
self,
|
364 |
+
x: torch.Tensor,
|
365 |
+
x_mask: torch.Tensor,
|
366 |
+
offset: Union[int, torch.Tensor] = 0
|
367 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
368 |
+
"""Input x.
|
369 |
+
|
370 |
+
Args:
|
371 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
372 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
373 |
+
|
374 |
+
Returns:
|
375 |
+
torch.Tensor: linear input tensor (#batch, time', odim),
|
376 |
+
where time' = time .
|
377 |
+
torch.Tensor: linear input mask (#batch, 1, time'),
|
378 |
+
where time' = time .
|
379 |
+
|
380 |
+
"""
|
381 |
+
x = self.out(x)
|
382 |
+
x, pos_emb = self.pos_enc(x, offset)
|
383 |
+
return x, pos_emb, x_mask
|
cosyvoice/transformer/upsample_encoder.py
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
2 |
+
# 2022 Xingchen Song ([email protected])
|
3 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
17 |
+
"""Encoder definition."""
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
import torch.utils.checkpoint as ckpt
|
23 |
+
from torch.nn import functional as F
|
24 |
+
|
25 |
+
from cosyvoice.transformer.convolution import ConvolutionModule
|
26 |
+
from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
|
27 |
+
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
28 |
+
from cosyvoice.utils.class_utils import (
|
29 |
+
COSYVOICE_EMB_CLASSES,
|
30 |
+
COSYVOICE_SUBSAMPLE_CLASSES,
|
31 |
+
COSYVOICE_ATTENTION_CLASSES,
|
32 |
+
COSYVOICE_ACTIVATION_CLASSES,
|
33 |
+
)
|
34 |
+
from cosyvoice.utils.mask import make_pad_mask
|
35 |
+
from cosyvoice.utils.mask import add_optional_chunk_mask
|
36 |
+
|
37 |
+
|
38 |
+
class Upsample1D(nn.Module):
|
39 |
+
"""A 1D upsampling layer with an optional convolution.
|
40 |
+
|
41 |
+
Parameters:
|
42 |
+
channels (`int`):
|
43 |
+
number of channels in the inputs and outputs.
|
44 |
+
use_conv (`bool`, default `False`):
|
45 |
+
option to use a convolution.
|
46 |
+
use_conv_transpose (`bool`, default `False`):
|
47 |
+
option to use a convolution transpose.
|
48 |
+
out_channels (`int`, optional):
|
49 |
+
number of output channels. Defaults to `channels`.
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(self, channels: int, out_channels: int, stride: int=2):
|
53 |
+
super().__init__()
|
54 |
+
self.channels = channels
|
55 |
+
self.out_channels = out_channels
|
56 |
+
self.stride = stride
|
57 |
+
# In this mode, first repeat interpolate, than conv with stride=1
|
58 |
+
self.conv = nn.Conv1d(
|
59 |
+
self.channels, self.out_channels, stride*2+1, stride=1,
|
60 |
+
padding=0,
|
61 |
+
)
|
62 |
+
|
63 |
+
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor):
|
64 |
+
outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
|
65 |
+
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
|
66 |
+
outputs = self.conv(outputs)
|
67 |
+
return outputs, input_lengths * self.stride
|
68 |
+
|
69 |
+
|
70 |
+
class PreLookaheadLayer(nn.Module):
|
71 |
+
def __init__(self, channels: int, pre_lookahead_len: int = 1):
|
72 |
+
super().__init__()
|
73 |
+
self.channels = channels
|
74 |
+
self.pre_lookahead_len = pre_lookahead_len
|
75 |
+
self.conv1 = nn.Conv1d(
|
76 |
+
channels, channels,
|
77 |
+
kernel_size=pre_lookahead_len+1,
|
78 |
+
stride=1, padding=0,
|
79 |
+
)
|
80 |
+
self.conv2 = nn.Conv1d(
|
81 |
+
channels, channels,
|
82 |
+
kernel_size=3, stride=1, padding=0,
|
83 |
+
)
|
84 |
+
|
85 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
86 |
+
"""
|
87 |
+
inputs: (batch_size, seq_len, channels)
|
88 |
+
"""
|
89 |
+
outputs = inputs.transpose(1, 2).contiguous()
|
90 |
+
# look ahead
|
91 |
+
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
|
92 |
+
outputs = F.leaky_relu(self.conv1(outputs))
|
93 |
+
# outputs
|
94 |
+
outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0)
|
95 |
+
outputs = self.conv2(outputs)
|
96 |
+
outputs = outputs.transpose(1, 2).contiguous()
|
97 |
+
|
98 |
+
# residual connection
|
99 |
+
outputs = outputs + inputs
|
100 |
+
return outputs
|
101 |
+
|
102 |
+
|
103 |
+
class UpsampleConformerEncoder(torch.nn.Module):
|
104 |
+
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
input_size: int,
|
108 |
+
output_size: int = 256,
|
109 |
+
attention_heads: int = 4,
|
110 |
+
linear_units: int = 2048,
|
111 |
+
num_blocks: int = 6,
|
112 |
+
dropout_rate: float = 0.1,
|
113 |
+
positional_dropout_rate: float = 0.1,
|
114 |
+
attention_dropout_rate: float = 0.0,
|
115 |
+
input_layer: str = "conv2d",
|
116 |
+
pos_enc_layer_type: str = "rel_pos",
|
117 |
+
normalize_before: bool = True,
|
118 |
+
static_chunk_size: int = 0,
|
119 |
+
use_dynamic_chunk: bool = False,
|
120 |
+
global_cmvn: torch.nn.Module = None,
|
121 |
+
use_dynamic_left_chunk: bool = False,
|
122 |
+
positionwise_conv_kernel_size: int = 1,
|
123 |
+
macaron_style: bool = True,
|
124 |
+
selfattention_layer_type: str = "rel_selfattn",
|
125 |
+
activation_type: str = "swish",
|
126 |
+
use_cnn_module: bool = True,
|
127 |
+
cnn_module_kernel: int = 15,
|
128 |
+
causal: bool = False,
|
129 |
+
cnn_module_norm: str = "batch_norm",
|
130 |
+
key_bias: bool = True,
|
131 |
+
gradient_checkpointing: bool = False,
|
132 |
+
):
|
133 |
+
"""
|
134 |
+
Args:
|
135 |
+
input_size (int): input dim
|
136 |
+
output_size (int): dimension of attention
|
137 |
+
attention_heads (int): the number of heads of multi head attention
|
138 |
+
linear_units (int): the hidden units number of position-wise feed
|
139 |
+
forward
|
140 |
+
num_blocks (int): the number of decoder blocks
|
141 |
+
dropout_rate (float): dropout rate
|
142 |
+
attention_dropout_rate (float): dropout rate in attention
|
143 |
+
positional_dropout_rate (float): dropout rate after adding
|
144 |
+
positional encoding
|
145 |
+
input_layer (str): input layer type.
|
146 |
+
optional [linear, conv2d, conv2d6, conv2d8]
|
147 |
+
pos_enc_layer_type (str): Encoder positional encoding layer type.
|
148 |
+
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
|
149 |
+
normalize_before (bool):
|
150 |
+
True: use layer_norm before each sub-block of a layer.
|
151 |
+
False: use layer_norm after each sub-block of a layer.
|
152 |
+
static_chunk_size (int): chunk size for static chunk training and
|
153 |
+
decoding
|
154 |
+
use_dynamic_chunk (bool): whether use dynamic chunk size for
|
155 |
+
training or not, You can only use fixed chunk(chunk_size > 0)
|
156 |
+
or dyanmic chunk size(use_dynamic_chunk = True)
|
157 |
+
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
|
158 |
+
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
159 |
+
dynamic chunk training
|
160 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
161 |
+
gradient_checkpointing: rerunning a forward-pass segment for each
|
162 |
+
checkpointed segment during backward.
|
163 |
+
"""
|
164 |
+
super().__init__()
|
165 |
+
self._output_size = output_size
|
166 |
+
|
167 |
+
self.global_cmvn = global_cmvn
|
168 |
+
self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
169 |
+
input_size,
|
170 |
+
output_size,
|
171 |
+
dropout_rate,
|
172 |
+
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
173 |
+
positional_dropout_rate),
|
174 |
+
)
|
175 |
+
|
176 |
+
self.normalize_before = normalize_before
|
177 |
+
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
|
178 |
+
self.static_chunk_size = static_chunk_size
|
179 |
+
self.use_dynamic_chunk = use_dynamic_chunk
|
180 |
+
self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
181 |
+
self.gradient_checkpointing = gradient_checkpointing
|
182 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
183 |
+
# self-attention module definition
|
184 |
+
encoder_selfattn_layer_args = (
|
185 |
+
attention_heads,
|
186 |
+
output_size,
|
187 |
+
attention_dropout_rate,
|
188 |
+
key_bias,
|
189 |
+
)
|
190 |
+
# feed-forward module definition
|
191 |
+
positionwise_layer_args = (
|
192 |
+
output_size,
|
193 |
+
linear_units,
|
194 |
+
dropout_rate,
|
195 |
+
activation,
|
196 |
+
)
|
197 |
+
# convolution module definition
|
198 |
+
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
199 |
+
cnn_module_norm, causal)
|
200 |
+
self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3)
|
201 |
+
self.encoders = torch.nn.ModuleList([
|
202 |
+
ConformerEncoderLayer(
|
203 |
+
output_size,
|
204 |
+
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
205 |
+
*encoder_selfattn_layer_args),
|
206 |
+
PositionwiseFeedForward(*positionwise_layer_args),
|
207 |
+
PositionwiseFeedForward(
|
208 |
+
*positionwise_layer_args) if macaron_style else None,
|
209 |
+
ConvolutionModule(
|
210 |
+
*convolution_layer_args) if use_cnn_module else None,
|
211 |
+
dropout_rate,
|
212 |
+
normalize_before,
|
213 |
+
) for _ in range(num_blocks)
|
214 |
+
])
|
215 |
+
self.up_layer = Upsample1D(channels=512, out_channels=512, stride=2)
|
216 |
+
self.up_embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
217 |
+
input_size,
|
218 |
+
output_size,
|
219 |
+
dropout_rate,
|
220 |
+
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
221 |
+
positional_dropout_rate),
|
222 |
+
)
|
223 |
+
self.up_encoders = torch.nn.ModuleList([
|
224 |
+
ConformerEncoderLayer(
|
225 |
+
output_size,
|
226 |
+
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
227 |
+
*encoder_selfattn_layer_args),
|
228 |
+
PositionwiseFeedForward(*positionwise_layer_args),
|
229 |
+
PositionwiseFeedForward(
|
230 |
+
*positionwise_layer_args) if macaron_style else None,
|
231 |
+
ConvolutionModule(
|
232 |
+
*convolution_layer_args) if use_cnn_module else None,
|
233 |
+
dropout_rate,
|
234 |
+
normalize_before,
|
235 |
+
) for _ in range(4)
|
236 |
+
])
|
237 |
+
|
238 |
+
def output_size(self) -> int:
|
239 |
+
return self._output_size
|
240 |
+
|
241 |
+
def forward(
|
242 |
+
self,
|
243 |
+
xs: torch.Tensor,
|
244 |
+
xs_lens: torch.Tensor,
|
245 |
+
decoding_chunk_size: int = 0,
|
246 |
+
num_decoding_left_chunks: int = -1,
|
247 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
248 |
+
"""Embed positions in tensor.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
xs: padded input tensor (B, T, D)
|
252 |
+
xs_lens: input length (B)
|
253 |
+
decoding_chunk_size: decoding chunk size for dynamic chunk
|
254 |
+
0: default for training, use random dynamic chunk.
|
255 |
+
<0: for decoding, use full chunk.
|
256 |
+
>0: for decoding, use fixed chunk size as set.
|
257 |
+
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
258 |
+
the chunk size is decoding_chunk_size.
|
259 |
+
>=0: use num_decoding_left_chunks
|
260 |
+
<0: use all left chunks
|
261 |
+
Returns:
|
262 |
+
encoder output tensor xs, and subsampled masks
|
263 |
+
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
264 |
+
masks: torch.Tensor batch padding mask after subsample
|
265 |
+
(B, 1, T' ~= T/subsample_rate)
|
266 |
+
NOTE(xcsong):
|
267 |
+
We pass the `__call__` method of the modules instead of `forward` to the
|
268 |
+
checkpointing API because `__call__` attaches all the hooks of the module.
|
269 |
+
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
270 |
+
"""
|
271 |
+
T = xs.size(1)
|
272 |
+
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
273 |
+
if self.global_cmvn is not None:
|
274 |
+
xs = self.global_cmvn(xs)
|
275 |
+
xs, pos_emb, masks = self.embed(xs, masks)
|
276 |
+
mask_pad = masks # (B, 1, T/subsample_rate)
|
277 |
+
chunk_masks = add_optional_chunk_mask(xs, masks,
|
278 |
+
self.use_dynamic_chunk,
|
279 |
+
self.use_dynamic_left_chunk,
|
280 |
+
decoding_chunk_size,
|
281 |
+
self.static_chunk_size,
|
282 |
+
num_decoding_left_chunks)
|
283 |
+
# lookahead + conformer encoder
|
284 |
+
xs = self.pre_lookahead_layer(xs)
|
285 |
+
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
286 |
+
|
287 |
+
# upsample + conformer encoder
|
288 |
+
xs = xs.transpose(1, 2).contiguous()
|
289 |
+
xs, xs_lens = self.up_layer(xs, xs_lens)
|
290 |
+
xs = xs.transpose(1, 2).contiguous()
|
291 |
+
T = xs.size(1)
|
292 |
+
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
293 |
+
xs, pos_emb, masks = self.up_embed(xs, masks)
|
294 |
+
mask_pad = masks # (B, 1, T/subsample_rate)
|
295 |
+
chunk_masks = add_optional_chunk_mask(xs, masks,
|
296 |
+
self.use_dynamic_chunk,
|
297 |
+
self.use_dynamic_left_chunk,
|
298 |
+
decoding_chunk_size,
|
299 |
+
self.static_chunk_size * self.up_layer.stride,
|
300 |
+
num_decoding_left_chunks)
|
301 |
+
xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad)
|
302 |
+
|
303 |
+
if self.normalize_before:
|
304 |
+
xs = self.after_norm(xs)
|
305 |
+
# Here we assume the mask is not changed in encoder layers, so just
|
306 |
+
# return the masks before encoder layers, and the masks will be used
|
307 |
+
# for cross attention with decoder later
|
308 |
+
return xs, masks
|
309 |
+
|
310 |
+
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
311 |
+
pos_emb: torch.Tensor,
|
312 |
+
mask_pad: torch.Tensor) -> torch.Tensor:
|
313 |
+
for layer in self.encoders:
|
314 |
+
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
315 |
+
return xs
|
316 |
+
|
317 |
+
def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
318 |
+
pos_emb: torch.Tensor,
|
319 |
+
mask_pad: torch.Tensor) -> torch.Tensor:
|
320 |
+
for layer in self.up_encoders:
|
321 |
+
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
322 |
+
return xs
|
cosyvoice/utils/__init__.py
ADDED
File without changes
|
cosyvoice/utils/class_utils.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright [2023-11-28] <[email protected], Xingchen Song>
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from cosyvoice.transformer.activation import Swish
|
18 |
+
from cosyvoice.transformer.subsampling import (
|
19 |
+
LinearNoSubsampling,
|
20 |
+
EmbedinigNoSubsampling,
|
21 |
+
Conv1dSubsampling2,
|
22 |
+
Conv2dSubsampling4,
|
23 |
+
Conv2dSubsampling6,
|
24 |
+
Conv2dSubsampling8,
|
25 |
+
)
|
26 |
+
from cosyvoice.transformer.embedding import (PositionalEncoding,
|
27 |
+
RelPositionalEncoding,
|
28 |
+
WhisperPositionalEncoding,
|
29 |
+
LearnablePositionalEncoding,
|
30 |
+
NoPositionalEncoding)
|
31 |
+
from cosyvoice.transformer.attention import (MultiHeadedAttention,
|
32 |
+
RelPositionMultiHeadedAttention)
|
33 |
+
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
|
34 |
+
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
|
35 |
+
|
36 |
+
|
37 |
+
COSYVOICE_ACTIVATION_CLASSES = {
|
38 |
+
"hardtanh": torch.nn.Hardtanh,
|
39 |
+
"tanh": torch.nn.Tanh,
|
40 |
+
"relu": torch.nn.ReLU,
|
41 |
+
"selu": torch.nn.SELU,
|
42 |
+
"swish": getattr(torch.nn, "SiLU", Swish),
|
43 |
+
"gelu": torch.nn.GELU,
|
44 |
+
}
|
45 |
+
|
46 |
+
COSYVOICE_SUBSAMPLE_CLASSES = {
|
47 |
+
"linear": LinearNoSubsampling,
|
48 |
+
"linear_legacy": LegacyLinearNoSubsampling,
|
49 |
+
"embed": EmbedinigNoSubsampling,
|
50 |
+
"conv1d2": Conv1dSubsampling2,
|
51 |
+
"conv2d": Conv2dSubsampling4,
|
52 |
+
"conv2d6": Conv2dSubsampling6,
|
53 |
+
"conv2d8": Conv2dSubsampling8,
|
54 |
+
'paraformer_dummy': torch.nn.Identity
|
55 |
+
}
|
56 |
+
|
57 |
+
COSYVOICE_EMB_CLASSES = {
|
58 |
+
"embed": PositionalEncoding,
|
59 |
+
"abs_pos": PositionalEncoding,
|
60 |
+
"rel_pos": RelPositionalEncoding,
|
61 |
+
"rel_pos_espnet": EspnetRelPositionalEncoding,
|
62 |
+
"no_pos": NoPositionalEncoding,
|
63 |
+
"abs_pos_whisper": WhisperPositionalEncoding,
|
64 |
+
"embed_learnable_pe": LearnablePositionalEncoding,
|
65 |
+
}
|
66 |
+
|
67 |
+
COSYVOICE_ATTENTION_CLASSES = {
|
68 |
+
"selfattn": MultiHeadedAttention,
|
69 |
+
"rel_selfattn": RelPositionMultiHeadedAttention,
|
70 |
+
}
|
cosyvoice/utils/common.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Unility functions for Transformer."""
|
17 |
+
|
18 |
+
import random
|
19 |
+
from typing import List
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
|
24 |
+
IGNORE_ID = -1
|
25 |
+
|
26 |
+
|
27 |
+
def pad_list(xs: List[torch.Tensor], pad_value: int):
|
28 |
+
"""Perform padding for the list of tensors.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
|
32 |
+
pad_value (float): Value for padding.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
Tensor: Padded tensor (B, Tmax, `*`).
|
36 |
+
|
37 |
+
Examples:
|
38 |
+
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
|
39 |
+
>>> x
|
40 |
+
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
|
41 |
+
>>> pad_list(x, 0)
|
42 |
+
tensor([[1., 1., 1., 1.],
|
43 |
+
[1., 1., 0., 0.],
|
44 |
+
[1., 0., 0., 0.]])
|
45 |
+
|
46 |
+
"""
|
47 |
+
max_len = max([len(item) for item in xs])
|
48 |
+
batchs = len(xs)
|
49 |
+
ndim = xs[0].ndim
|
50 |
+
if ndim == 1:
|
51 |
+
pad_res = torch.zeros(batchs,
|
52 |
+
max_len,
|
53 |
+
dtype=xs[0].dtype,
|
54 |
+
device=xs[0].device)
|
55 |
+
elif ndim == 2:
|
56 |
+
pad_res = torch.zeros(batchs,
|
57 |
+
max_len,
|
58 |
+
xs[0].shape[1],
|
59 |
+
dtype=xs[0].dtype,
|
60 |
+
device=xs[0].device)
|
61 |
+
elif ndim == 3:
|
62 |
+
pad_res = torch.zeros(batchs,
|
63 |
+
max_len,
|
64 |
+
xs[0].shape[1],
|
65 |
+
xs[0].shape[2],
|
66 |
+
dtype=xs[0].dtype,
|
67 |
+
device=xs[0].device)
|
68 |
+
else:
|
69 |
+
raise ValueError(f"Unsupported ndim: {ndim}")
|
70 |
+
pad_res.fill_(pad_value)
|
71 |
+
for i in range(batchs):
|
72 |
+
pad_res[i, :len(xs[i])] = xs[i]
|
73 |
+
return pad_res
|
74 |
+
|
75 |
+
|
76 |
+
def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor,
|
77 |
+
ignore_label: int) -> torch.Tensor:
|
78 |
+
"""Calculate accuracy.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
|
82 |
+
pad_targets (LongTensor): Target label tensors (B, Lmax).
|
83 |
+
ignore_label (int): Ignore label id.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
torch.Tensor: Accuracy value (0.0 - 1.0).
|
87 |
+
|
88 |
+
"""
|
89 |
+
pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1),
|
90 |
+
pad_outputs.size(1)).argmax(2)
|
91 |
+
mask = pad_targets != ignore_label
|
92 |
+
numerator = torch.sum(
|
93 |
+
pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
|
94 |
+
denominator = torch.sum(mask)
|
95 |
+
return (numerator / denominator).detach()
|
96 |
+
|
97 |
+
|
98 |
+
def get_padding(kernel_size, dilation=1):
|
99 |
+
return int((kernel_size * dilation - dilation) / 2)
|
100 |
+
|
101 |
+
|
102 |
+
def init_weights(m, mean=0.0, std=0.01):
|
103 |
+
classname = m.__class__.__name__
|
104 |
+
if classname.find("Conv") != -1:
|
105 |
+
m.weight.data.normal_(mean, std)
|
106 |
+
|
107 |
+
|
108 |
+
# Repetition Aware Sampling in VALL-E 2
|
109 |
+
def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1):
|
110 |
+
top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k)
|
111 |
+
rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item()
|
112 |
+
if rep_num >= win_size * tau_r:
|
113 |
+
top_ids = random_sampling(weighted_scores, decoded_tokens, sampling)
|
114 |
+
return top_ids
|
115 |
+
|
116 |
+
|
117 |
+
def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25):
|
118 |
+
prob, indices = [], []
|
119 |
+
cum_prob = 0.0
|
120 |
+
sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True)
|
121 |
+
for i in range(len(sorted_idx)):
|
122 |
+
# sampling both top-p and numbers.
|
123 |
+
if cum_prob < top_p and len(prob) < top_k:
|
124 |
+
cum_prob += sorted_value[i]
|
125 |
+
prob.append(sorted_value[i])
|
126 |
+
indices.append(sorted_idx[i])
|
127 |
+
else:
|
128 |
+
break
|
129 |
+
prob = torch.tensor(prob).to(weighted_scores)
|
130 |
+
indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
|
131 |
+
top_ids = indices[prob.multinomial(1, replacement=True)]
|
132 |
+
return top_ids
|
133 |
+
|
134 |
+
|
135 |
+
def random_sampling(weighted_scores, decoded_tokens, sampling):
|
136 |
+
top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True)
|
137 |
+
return top_ids
|
138 |
+
|
139 |
+
|
140 |
+
def fade_in_out(fade_in_mel, fade_out_mel, window):
|
141 |
+
device = fade_in_mel.device
|
142 |
+
fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
|
143 |
+
mel_overlap_len = int(window.shape[0] / 2)
|
144 |
+
if fade_in_mel.device == torch.device('cpu'):
|
145 |
+
fade_in_mel = fade_in_mel.clone()
|
146 |
+
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
|
147 |
+
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
|
148 |
+
return fade_in_mel.to(device)
|
149 |
+
|
150 |
+
|
151 |
+
def set_all_random_seed(seed):
|
152 |
+
random.seed(seed)
|
153 |
+
np.random.seed(seed)
|
154 |
+
torch.manual_seed(seed)
|
155 |
+
torch.cuda.manual_seed_all(seed)
|
156 |
+
|
157 |
+
|
158 |
+
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
|
159 |
+
assert mask.dtype == torch.bool
|
160 |
+
assert dtype in [torch.float32, torch.bfloat16, torch.float16]
|
161 |
+
mask = mask.to(dtype)
|
162 |
+
# attention mask bias
|
163 |
+
# NOTE(Mddct): torch.finfo jit issues
|
164 |
+
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
|
165 |
+
mask = (1.0 - mask) * torch.finfo(dtype).min
|
166 |
+
return mask
|
cosyvoice/utils/executor.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import logging
|
17 |
+
from contextlib import nullcontext
|
18 |
+
import os
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.distributed as dist
|
22 |
+
|
23 |
+
from cosyvoice.utils.train_utils import update_parameter_and_lr, log_per_step, log_per_save, batch_forward, batch_backward, save_model, cosyvoice_join
|
24 |
+
|
25 |
+
|
26 |
+
class Executor:
|
27 |
+
|
28 |
+
def __init__(self, gan: bool = False):
|
29 |
+
self.gan = gan
|
30 |
+
self.step = 0
|
31 |
+
self.epoch = 0
|
32 |
+
self.rank = int(os.environ.get('RANK', 0))
|
33 |
+
self.device = torch.device('cuda:{}'.format(self.rank))
|
34 |
+
|
35 |
+
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join):
|
36 |
+
''' Train one epoch
|
37 |
+
'''
|
38 |
+
|
39 |
+
lr = optimizer.param_groups[0]['lr']
|
40 |
+
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
41 |
+
logging.info('using accumulate grad, new batch size is {} times'
|
42 |
+
' larger than before'.format(info_dict['accum_grad']))
|
43 |
+
# A context manager to be used in conjunction with an instance of
|
44 |
+
# torch.nn.parallel.DistributedDataParallel to be able to train
|
45 |
+
# with uneven inputs across participating processes.
|
46 |
+
model.train()
|
47 |
+
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
48 |
+
with model_context():
|
49 |
+
for batch_idx, batch_dict in enumerate(train_data_loader):
|
50 |
+
info_dict["tag"] = "TRAIN"
|
51 |
+
info_dict["step"] = self.step
|
52 |
+
info_dict["epoch"] = self.epoch
|
53 |
+
info_dict["batch_idx"] = batch_idx
|
54 |
+
if cosyvoice_join(group_join, info_dict):
|
55 |
+
break
|
56 |
+
|
57 |
+
# Disable gradient synchronizations across DDP processes.
|
58 |
+
# Within this context, gradients will be accumulated on module
|
59 |
+
# variables, which will later be synchronized.
|
60 |
+
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
61 |
+
context = model.no_sync
|
62 |
+
# Used for single gpu training and DDP gradient synchronization
|
63 |
+
# processes.
|
64 |
+
else:
|
65 |
+
context = nullcontext
|
66 |
+
|
67 |
+
with context():
|
68 |
+
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
69 |
+
info_dict = batch_backward(model, scaler, info_dict)
|
70 |
+
|
71 |
+
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
72 |
+
log_per_step(writer, info_dict)
|
73 |
+
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
74 |
+
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
|
75 |
+
(batch_idx + 1) % info_dict["accum_grad"] == 0:
|
76 |
+
dist.barrier()
|
77 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
78 |
+
model.train()
|
79 |
+
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
80 |
+
self.step += 1
|
81 |
+
dist.barrier()
|
82 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
|
83 |
+
|
84 |
+
def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
85 |
+
writer, info_dict, scaler, group_join):
|
86 |
+
''' Train one epoch
|
87 |
+
'''
|
88 |
+
|
89 |
+
lr = optimizer.param_groups[0]['lr']
|
90 |
+
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
91 |
+
logging.info('using accumulate grad, new batch size is {} times'
|
92 |
+
' larger than before'.format(info_dict['accum_grad']))
|
93 |
+
# A context manager to be used in conjunction with an instance of
|
94 |
+
# torch.nn.parallel.DistributedDataParallel to be able to train
|
95 |
+
# with uneven inputs across participating processes.
|
96 |
+
model.train()
|
97 |
+
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
98 |
+
with model_context():
|
99 |
+
for batch_idx, batch_dict in enumerate(train_data_loader):
|
100 |
+
info_dict["tag"] = "TRAIN"
|
101 |
+
info_dict["step"] = self.step
|
102 |
+
info_dict["epoch"] = self.epoch
|
103 |
+
info_dict["batch_idx"] = batch_idx
|
104 |
+
if cosyvoice_join(group_join, info_dict):
|
105 |
+
break
|
106 |
+
|
107 |
+
# Disable gradient synchronizations across DDP processes.
|
108 |
+
# Within this context, gradients will be accumulated on module
|
109 |
+
# variables, which will later be synchronized.
|
110 |
+
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
111 |
+
context = model.no_sync
|
112 |
+
# Used for single gpu training and DDP gradient synchronization
|
113 |
+
# processes.
|
114 |
+
else:
|
115 |
+
context = nullcontext
|
116 |
+
|
117 |
+
with context():
|
118 |
+
batch_dict['turn'] = 'discriminator'
|
119 |
+
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
120 |
+
info_dict = batch_backward(model, scaler, info_dict)
|
121 |
+
info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
|
122 |
+
optimizer.zero_grad()
|
123 |
+
log_per_step(writer, info_dict)
|
124 |
+
with context():
|
125 |
+
batch_dict['turn'] = 'generator'
|
126 |
+
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
127 |
+
info_dict = batch_backward(model, scaler, info_dict)
|
128 |
+
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
129 |
+
optimizer_d.zero_grad()
|
130 |
+
log_per_step(writer, info_dict)
|
131 |
+
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
132 |
+
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
|
133 |
+
(batch_idx + 1) % info_dict["accum_grad"] == 0:
|
134 |
+
dist.barrier()
|
135 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
136 |
+
model.train()
|
137 |
+
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
138 |
+
self.step += 1
|
139 |
+
dist.barrier()
|
140 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
|
141 |
+
|
142 |
+
@torch.inference_mode()
|
143 |
+
def cv(self, model, cv_data_loader, writer, info_dict, on_batch_end=True):
|
144 |
+
''' Cross validation on
|
145 |
+
'''
|
146 |
+
logging.info('Epoch {} Step {} on_batch_end {} CV rank {}'.format(self.epoch, self.step + 1, on_batch_end, self.rank))
|
147 |
+
model.eval()
|
148 |
+
total_num_utts, total_loss_dict = 0, {} # avoid division by 0
|
149 |
+
for batch_idx, batch_dict in enumerate(cv_data_loader):
|
150 |
+
info_dict["tag"] = "CV"
|
151 |
+
info_dict["step"] = self.step
|
152 |
+
info_dict["epoch"] = self.epoch
|
153 |
+
info_dict["batch_idx"] = batch_idx
|
154 |
+
|
155 |
+
num_utts = len(batch_dict["utts"])
|
156 |
+
total_num_utts += num_utts
|
157 |
+
|
158 |
+
if self.gan is True:
|
159 |
+
batch_dict['turn'] = 'generator'
|
160 |
+
info_dict = batch_forward(model, batch_dict, None, info_dict)
|
161 |
+
|
162 |
+
for k, v in info_dict['loss_dict'].items():
|
163 |
+
if k not in total_loss_dict:
|
164 |
+
total_loss_dict[k] = []
|
165 |
+
total_loss_dict[k].append(v.item() * num_utts)
|
166 |
+
log_per_step(None, info_dict)
|
167 |
+
for k, v in total_loss_dict.items():
|
168 |
+
total_loss_dict[k] = sum(v) / total_num_utts
|
169 |
+
info_dict['loss_dict'] = total_loss_dict
|
170 |
+
log_per_save(writer, info_dict)
|
171 |
+
model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
|
172 |
+
save_model(model, model_name, info_dict)
|
cosyvoice/utils/file_utils.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
import torchaudio
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
logging.basicConfig(level=logging.DEBUG,
|
21 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
22 |
+
|
23 |
+
|
24 |
+
def read_lists(list_file):
|
25 |
+
lists = []
|
26 |
+
with open(list_file, 'r', encoding='utf8') as fin:
|
27 |
+
for line in fin:
|
28 |
+
lists.append(line.strip())
|
29 |
+
return lists
|
30 |
+
|
31 |
+
|
32 |
+
def read_json_lists(list_file):
|
33 |
+
lists = read_lists(list_file)
|
34 |
+
results = {}
|
35 |
+
for fn in lists:
|
36 |
+
with open(fn, 'r', encoding='utf8') as fin:
|
37 |
+
results.update(json.load(fin))
|
38 |
+
return results
|
39 |
+
|
40 |
+
|
41 |
+
def load_wav(wav, target_sr):
|
42 |
+
# speech, sample_rate = torchaudio.load(wav)
|
43 |
+
# speech = speech.mean(dim=0, keepdim=True)
|
44 |
+
# if sample_rate != target_sr:
|
45 |
+
# assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
|
46 |
+
# speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
|
47 |
+
|
48 |
+
import librosa, torch
|
49 |
+
speech, _ = librosa.load(path=wav, sr=target_sr)
|
50 |
+
speech = torch.from_numpy(speech).unsqueeze(dim=0)
|
51 |
+
return speech
|
cosyvoice/utils/frontend_utils.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import re
|
16 |
+
chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]+')
|
17 |
+
|
18 |
+
|
19 |
+
# whether contain chinese character
|
20 |
+
def contains_chinese(text):
|
21 |
+
return bool(chinese_char_pattern.search(text))
|
22 |
+
|
23 |
+
|
24 |
+
# replace special symbol
|
25 |
+
def replace_corner_mark(text):
|
26 |
+
text = text.replace('²', '平方')
|
27 |
+
text = text.replace('³', '立方')
|
28 |
+
return text
|
29 |
+
|
30 |
+
|
31 |
+
# remove meaningless symbol
|
32 |
+
def remove_bracket(text):
|
33 |
+
text = text.replace('(', '').replace(')', '')
|
34 |
+
text = text.replace('【', '').replace('】', '')
|
35 |
+
text = text.replace('`', '').replace('`', '')
|
36 |
+
text = text.replace("——", " ")
|
37 |
+
return text
|
38 |
+
|
39 |
+
|
40 |
+
# spell Arabic numerals
|
41 |
+
def spell_out_number(text: str, inflect_parser):
|
42 |
+
new_text = []
|
43 |
+
st = None
|
44 |
+
for i, c in enumerate(text):
|
45 |
+
if not c.isdigit():
|
46 |
+
if st is not None:
|
47 |
+
num_str = inflect_parser.number_to_words(text[st: i])
|
48 |
+
new_text.append(num_str)
|
49 |
+
st = None
|
50 |
+
new_text.append(c)
|
51 |
+
else:
|
52 |
+
if st is None:
|
53 |
+
st = i
|
54 |
+
if st is not None and st < len(text):
|
55 |
+
num_str = inflect_parser.number_to_words(text[st:])
|
56 |
+
new_text.append(num_str)
|
57 |
+
return ''.join(new_text)
|
58 |
+
|
59 |
+
|
60 |
+
# split paragrah logic:
|
61 |
+
# 1. per sentence max len token_max_n, min len token_min_n, merge if last sentence len less than merge_len
|
62 |
+
# 2. cal sentence len according to lang
|
63 |
+
# 3. split sentence according to puncatation
|
64 |
+
def split_paragraph(text: str, tokenize, lang="zh", token_max_n=80, token_min_n=60, merge_len=20, comma_split=False):
|
65 |
+
def calc_utt_length(_text: str):
|
66 |
+
if lang == "zh":
|
67 |
+
return len(_text)
|
68 |
+
else:
|
69 |
+
return len(tokenize(_text))
|
70 |
+
|
71 |
+
def should_merge(_text: str):
|
72 |
+
if lang == "zh":
|
73 |
+
return len(_text) < merge_len
|
74 |
+
else:
|
75 |
+
return len(tokenize(_text)) < merge_len
|
76 |
+
|
77 |
+
if lang == "zh":
|
78 |
+
pounc = ['。', '?', '!', ';', ':', '、', '.', '?', '!', ';']
|
79 |
+
else:
|
80 |
+
pounc = ['.', '?', '!', ';', ':']
|
81 |
+
if comma_split:
|
82 |
+
pounc.extend([',', ','])
|
83 |
+
|
84 |
+
if text[-1] not in pounc:
|
85 |
+
if lang == "zh":
|
86 |
+
text += "。"
|
87 |
+
else:
|
88 |
+
text += "."
|
89 |
+
|
90 |
+
st = 0
|
91 |
+
utts = []
|
92 |
+
for i, c in enumerate(text):
|
93 |
+
if c in pounc:
|
94 |
+
if len(text[st: i]) > 0:
|
95 |
+
utts.append(text[st: i] + c)
|
96 |
+
if i + 1 < len(text) and text[i + 1] in ['"', '”']:
|
97 |
+
tmp = utts.pop(-1)
|
98 |
+
utts.append(tmp + text[i + 1])
|
99 |
+
st = i + 2
|
100 |
+
else:
|
101 |
+
st = i + 1
|
102 |
+
|
103 |
+
final_utts = []
|
104 |
+
cur_utt = ""
|
105 |
+
for utt in utts:
|
106 |
+
if calc_utt_length(cur_utt + utt) > token_max_n and calc_utt_length(cur_utt) > token_min_n:
|
107 |
+
final_utts.append(cur_utt)
|
108 |
+
cur_utt = ""
|
109 |
+
cur_utt = cur_utt + utt
|
110 |
+
if len(cur_utt) > 0:
|
111 |
+
if should_merge(cur_utt) and len(final_utts) != 0:
|
112 |
+
final_utts[-1] = final_utts[-1] + cur_utt
|
113 |
+
else:
|
114 |
+
final_utts.append(cur_utt)
|
115 |
+
|
116 |
+
return final_utts
|
117 |
+
|
118 |
+
|
119 |
+
# remove blank between chinese character
|
120 |
+
def replace_blank(text: str):
|
121 |
+
out_str = []
|
122 |
+
for i, c in enumerate(text):
|
123 |
+
if c == " ":
|
124 |
+
if ((text[i + 1].isascii() and text[i + 1] != " ") and
|
125 |
+
(text[i - 1].isascii() and text[i - 1] != " ")):
|
126 |
+
out_str.append(c)
|
127 |
+
else:
|
128 |
+
out_str.append(c)
|
129 |
+
return "".join(out_str)
|