File size: 6,125 Bytes
07423df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import psutil
import torch
from h2o_wave import Q, data, ui

from llm_studio.app_utils.config import default_cfg
from llm_studio.app_utils.sections.common import clean_dashboard
from llm_studio.app_utils.utils import (
    get_datasets,
    get_experiments,
    get_gpu_usage,
    get_single_gpu_usage,
)
from llm_studio.app_utils.wave_utils import ui_table_from_df, wave_theme
from llm_studio.src.utils.export_utils import get_size_str


async def home(q: Q) -> None:
    await clean_dashboard(q, mode="home")
    q.client["nav/active"] = "home"

    experiments = get_experiments(q)
    hdd = psutil.disk_usage(default_cfg.llm_studio_workdir)

    q.page["home/disk_usage"] = ui.tall_gauge_stat_card(
        box=ui.box("content", order=2, width="20%" if len(experiments) > 0 else "30%"),
        title="Disk usage",
        value=f"{hdd.percent:.2f} %",
        aux_value=f"{get_size_str(hdd.used, sig_figs=1)} /\
            {get_size_str(hdd.total, sig_figs=1)}",
        plot_color=wave_theme.get_primary_color(q),
        progress=hdd.percent / 100,
    )

    if len(experiments) > 0:
        num_finished = len(experiments[experiments["status"] == "finished"])
        num_running_queued = len(
            experiments[experiments["status"].isin(["queued", "running"])]
        )
        num_failed_stopped = len(
            experiments[experiments["status"].isin(["failed", "stopped"])]
        )

        q.page["home/experiments_stats"] = ui.form_card(
            box=ui.box("content", order=1, width="40%"),
            title="Experiments",
            items=[
                ui.visualization(
                    plot=ui.plot(
                        [ui.mark(type="interval", x="=status", y="=count", y_min=0)]
                    ),
                    data=data(
                        fields="status count",
                        rows=[
                            ("finished", num_finished),
                            ("queued + running", num_running_queued),
                            ("failed + stopped", num_failed_stopped),
                        ],
                        pack=True,  # type: ignore
                    ),
                )
            ],
        )

    stats = []
    if torch.cuda.is_available():
        stats.append(ui.stat(label="Current GPU load", value=f"{get_gpu_usage():.1f}%"))
    stats += [
        ui.stat(label="Current CPU load", value=f"{psutil.cpu_percent()}%"),
        ui.stat(
            label="Memory usage",
            value=f"{get_size_str(psutil.virtual_memory().used, sig_figs=1)} /\
                    {get_size_str(psutil.virtual_memory().total, sig_figs=1)}",
        ),
    ]

    q.page["home/compute_stats"] = ui.tall_stats_card(
        box=ui.box("content", order=1, width="40%" if len(experiments) > 0 else "70%"),
        items=stats,
    )

    if torch.cuda.is_available():
        q.page["home/gpu_stats"] = ui.form_card(
            box=ui.box("expander", width="100%"),
            items=[
                ui.expander(
                    name="expander",
                    label="Detailed GPU stats",
                    items=get_single_gpu_usage(
                        highlight=wave_theme.get_primary_color(q)
                    ),
                    expanded=True,
                )
            ],
        )
        q.client.delete_cards.add("home/gpu_stats")

    q.client.delete_cards.add("home/compute_stats")
    q.client.delete_cards.add("home/disk_usage")
    q.client.delete_cards.add("home/experiments_stats")

    q.client["experiment/list/mode"] = "train"

    q.client["dataset/list/df_datasets"] = get_datasets(q)
    df_viz = q.client["dataset/list/df_datasets"].copy()
    df_viz = df_viz[df_viz.columns.intersection(["name", "problem type"])]

    if torch.cuda.is_available():
        table_height = "max(calc(100vh - 660px), 400px)"
    else:
        table_height = "max(calc(100vh - 550px), 400px)"

    q.page["dataset/list"] = ui.form_card(
        box="datasets",
        items=[
            ui.inline(
                [
                    ui.button(
                        name="dataset/list", icon="Database", label="", primary=True
                    ),
                    ui.label("List of Datasets"),
                ]
            ),
            ui_table_from_df(
                q=q,
                df=df_viz,
                name="dataset/list/table",
                sortables=[],
                searchables=[],
                min_widths={"name": "240", "problem type": "130"},
                link_col="name",
                height=table_height,
            ),
        ],
    )
    q.client.delete_cards.add("dataset/list")

    q.client["experiment/list/df_experiments"] = get_experiments(
        q, mode=q.client["experiment/list/mode"], status="finished"
    )

    df_viz = q.client["experiment/list/df_experiments"].copy()
    df_viz = df_viz.rename(columns={"process_id": "pid", "config_file": "problem type"})
    df_viz = df_viz[
        df_viz.columns.intersection(
            ["name", "dataset", "problem type", "metric", "val metric"]
        )
    ]

    q.page["experiment/list"] = ui.form_card(
        box="experiments",
        items=[
            ui.inline(
                [
                    ui.button(
                        name="experiment/list",
                        icon="FlameSolid",
                        label="",
                        primary=True,
                    ),
                    ui.label("List of Experiments"),
                ]
            ),
            ui_table_from_df(
                q=q,
                df=df_viz,
                name="experiment/list/table",
                sortables=["val metric"],
                numerics=["val metric"],
                min_widths={
                    # "id": "50",
                    "name": "115",
                    "dataset": "100",
                    "problem type": "120",
                    "metric": "70",
                    "val metric": "85",
                },
                link_col="name",
                height=table_height,
            ),
        ],
    )