File size: 5,017 Bytes
07423df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
"""
Loss Implementation based upon
https://github.com/eric-mitchell/direct-preference-optimization
"""

import logging
from typing import Any, KeysView

import torch
import torch.nn.functional as F
from torch import nn

__all__ = ["Losses"]

logger = logging.getLogger(__name__)


class DPOLoss(nn.Module):
    """
    Implements
    "Direct Preference Optimization:
    Your Language Model is Secretly a Reward Model"
    from https://arxiv.org/abs/2305.18290
    """

    def __init__(self, cfg: Any):
        super().__init__()
        self.cfg = cfg

    def forward(
        self,
        policy_chosen_logps: torch.FloatTensor,
        policy_rejected_logps: torch.FloatTensor,
        reference_chosen_logps: torch.FloatTensor,
        reference_rejected_logps: torch.FloatTensor,
    ):
        pi_logratios = policy_chosen_logps - policy_rejected_logps
        ref_logratios = reference_chosen_logps - reference_rejected_logps

        losses = self.get_losses(logits=pi_logratios - ref_logratios)
        chosen_rewards = (
            self.cfg.training.beta
            * (policy_chosen_logps - reference_chosen_logps).detach()
        )
        rejected_rewards = (
            self.cfg.training.beta
            * (policy_rejected_logps - reference_rejected_logps).detach()
        )

        return losses.mean(), chosen_rewards.mean(), rejected_rewards.mean()

    def get_losses(self, logits):
        # The beta is a temperature parameter for the DPO loss,
        # typically something in the range of 0.1 to 0.5.
        # We ignore the reference model as beta -> 0.
        # The label_smoothing parameter encodes our uncertainty about the labels and
        # calculates a conservative DPO loss.

        # For now, set label_smoothing to 0 (original DPO loss).
        # See https://ericmitchell.ai/cdpo.pdf for more details
        label_smoothing = 0

        losses = (
            -F.logsigmoid(self.cfg.training.beta * logits) * (1 - label_smoothing)
            - F.logsigmoid(-self.cfg.training.beta * logits) * label_smoothing
        )
        return losses


class KTOPairLoss(nn.Module):
    """
    Implements original paired KTO implementation
    Adopted from https://github.com/ContextualAI/HALOs
    and https://github.com/huggingface/trl
    """

    def __init__(self, cfg: Any):
        super().__init__()
        self.cfg = cfg

    def forward(
        self,
        policy_chosen_logps: torch.FloatTensor,
        policy_rejected_logps: torch.FloatTensor,
        reference_chosen_logps: torch.FloatTensor,
        reference_rejected_logps: torch.FloatTensor,
    ):
        chosen_KL = (policy_chosen_logps - reference_chosen_logps).mean().clamp(min=0)
        rejected_KL = (
            (policy_rejected_logps - reference_rejected_logps).mean().clamp(min=0)
        )

        chosen_logratios = policy_chosen_logps - reference_chosen_logps
        rejected_logratios = policy_rejected_logps - reference_rejected_logps
        losses = torch.cat(
            (
                1
                - F.sigmoid(self.cfg.training.beta * (chosen_logratios - rejected_KL)),
                1
                - F.sigmoid(self.cfg.training.beta * (chosen_KL - rejected_logratios)),
            ),
            0,
        )

        chosen_rewards = (
            self.cfg.training.beta
            * (policy_chosen_logps - reference_chosen_logps).detach()
        ).float()
        rejected_rewards = (
            self.cfg.training.beta
            * (policy_rejected_logps - reference_rejected_logps).detach()
        ).float()

        return losses.mean(), chosen_rewards.mean(), rejected_rewards.mean()


class HingeLoss(DPOLoss):
    def get_losses(self, logits):
        losses = torch.relu(1 - self.cfg.training.beta * logits)
        return losses


class IPOLoss(DPOLoss):
    """
    Implements "A General Theoretical Paradigm
    to Understand Learning from Human Preferences"
    from https://arxiv.org/pdf/2310.12036.pdf
    """

    def get_losses(self, logits):
        # eqn (17) of the https://arxiv.org/pdf/2310.12036.pdf
        # where beta is the real, positive KL parameter for the IPO loss,
        # denoted by tau in the paper (see also eqn (6)).
        losses = (logits - 1 / (2 * self.cfg.training.beta)) ** 2
        return losses


class Losses:
    """Losses factory."""

    _losses = {
        "DPOLoss": DPOLoss,
        "HingeLoss": HingeLoss,
        "IPOLoss": IPOLoss,
        "KTOPairLoss": KTOPairLoss,
    }

    @classmethod
    def names(cls) -> KeysView:
        return cls._losses.keys()

    @classmethod
    def get(cls, name: str) -> Any:
        """Access to Losses.
        Args:
            name: losses name
        Returns:
            A class to build the Losses
        """
        return cls._losses.get(name, DPOLoss)


# see https://github.com/huggingface/trl/commit/29d439a2043edf4455b05cae5a1e2ade69d22794
LOSS_REDUCTION = {
    "DPOLoss": False,
    "KTOPairLoss": False,
    "HingeLoss": True,
    "IPOLoss": True,
}