Spaces:
Sleeping
Sleeping
File size: 5,583 Bytes
de77992 42f87c6 de77992 1bea5ac 42f87c6 de77992 42f87c6 de77992 31d0102 42f87c6 543c1bb 9c5d425 42f87c6 de77992 42f87c6 1bea5ac 42f87c6 31d0102 8216547 42f87c6 de77992 42f87c6 de77992 31d0102 42f87c6 31d0102 9e84bb1 1bea5ac 42f87c6 31d0102 42f87c6 1bea5ac 42f87c6 f069c91 42f87c6 f069c91 42f87c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import os
from dotenv import load_dotenv
import gradio as gr
from langchain_chroma import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain, create_history_aware_retriever
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import MessagesPlaceholder
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.vectorstores import VectorStoreRetriever
from langchain_openai import ChatOpenAI
from langchain.callbacks.tracers import ConsoleCallbackHandler
from langchain_huggingface import HuggingFaceEmbeddings
from datasets import load_dataset
import chromadb
from typing import List
from mixedbread_ai.client import MixedbreadAI
from tqdm import tqdm
# Global params
CHROMA_PATH = "chromadb_mem10_mxbai_800_complete"
MODEL_EMB = "mxbai-embed-large"
MODEL_RRK = "mixedbread-ai/mxbai-rerank-large-v1"
LLM_NAME = "gpt-4o-mini"
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
MXBAI_API_KEY = os.environ.get("MXBAI_API_KEY")
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_API_KEY = os.environ.get("HF_API_KEY")
# MixedbreadAI Client
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
mxbai_client = MixedbreadAI(api_key=MXBAI_API_KEY)
model_emb = "mixedbread-ai/mxbai-embed-large-v1"
# Set up ChromaDB
memoires_ds = load_dataset("eliot-hub/memoires_vec_800", split="data", token=HF_TOKEN, streaming=True)
batched_ds = memoires_ds.batch(batch_size=41000)
client = chromadb.Client()
collection = client.get_or_create_collection(name="embeddings_mxbai")
for batch in tqdm(batched_ds, desc="Processing dataset batches"):
collection.add(
ids=batch["id"],
metadatas=batch["metadata"],
documents=batch["document"],
embeddings=batch["embedding"],
)
print(f"Collection complete: {collection.count()}")
db = Chroma(
client=client,
collection_name=f"embeddings_mxbai",
embedding_function = HuggingFaceEmbeddings(model_name=model_emb)
)
# Reranker class
class Reranker(BaseRetriever):
retriever: VectorStoreRetriever
# model: CrossEncoder
k: int
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
docs = self.retriever.invoke(query)
results = mxbai_client.reranking(model=MODEL_RRK, query=query, input=[doc.page_content for doc in docs], return_input=True, top_k=self.k)
return [Document(page_content=res.input) for res in results.data]
# Set up reranker + LLM
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 25})
reranker = Reranker(retriever=retriever, k=4) #Reranker(retriever=retriever, model=model, k=4)
llm = ChatOpenAI(model=LLM_NAME, verbose=True) #, api_key=OPENAI_API_KEY, )
# Set up the contextualize question prompt
contextualize_q_system_prompt = (
"Compte tenu de l'historique des discussions et de la dernière question de l'utilisateur "
"qui peut faire référence à un contexte dans l'historique du chat, "
"formuler une question autonome qui peut être comprise "
"sans l'historique du chat. Ne répondez PAS à la question, "
"juste la reformuler si nécessaire et sinon la renvoyer telle quelle."
)
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
# Create the history-aware retriever
history_aware_retriever = create_history_aware_retriever(
llm, reranker, contextualize_q_prompt
)
# Set up the QA prompt
system_prompt = (
"Réponds à la question en te basant uniquement sur le contexte suivant: \n\n {context}"
)
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
# Create the question-answer chain
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
# Set up the conversation history
store = {}
def get_session_history(session_id: str) -> ChatMessageHistory:
if session_id not in store:
store[session_id] = ChatMessageHistory()
return store[session_id]
conversational_rag_chain = RunnableWithMessageHistory(
rag_chain,
get_session_history,
input_messages_key="input",
history_messages_key="chat_history",
output_messages_key="answer",
)
# Gradio interface
def chatbot(message, history):
session_id = "gradio_session"
response = conversational_rag_chain.invoke(
{"input": message},
config={
"configurable": {"session_id": session_id},
"callbacks": [ConsoleCallbackHandler()]
},
)["answer"]
return response
iface = gr.ChatInterface(
fn=chatbot,
textbox=gr.Textbox(lines=3),
title="Dataltist Chatbot",
description="Posez vos questions",
# theme="soft",
examples=[
{"text": "Qu'est-ce que l'assurance multirisque habitation ?"},
{"text": "Qu'est-ce que la garantie DTA ?"},
],
retry_btn=None,
undo_btn=None,
clear_btn="Effacer la conversation",
)
if __name__ == "__main__":
iface.launch() # share=True |