Spaces:
Build error
Build error
Add main application
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
6 |
+
import nltk
|
7 |
+
from nltk import sent_tokenize
|
8 |
+
nltk.download("punkt")
|
9 |
+
|
10 |
+
# Loading in dataframes
|
11 |
+
krishnamurti_df = pd.read_json("krishnamurti_df.json")
|
12 |
+
stoic_df = pd.read_json("stoic_df.json")
|
13 |
+
|
14 |
+
# Loading in sentence_similarity model
|
15 |
+
sentence_similarity_model = "all-mpnet-base-v2"
|
16 |
+
model = SentenceTransformer(sentence_similarity_model)
|
17 |
+
|
18 |
+
# Loading in text-generation models
|
19 |
+
stoic_generator = pipeline("text-generation", model="eliwill/stoic-generator-10e")
|
20 |
+
krishnamurti_generator = pipeline("text-generation", model="distilgpt2")
|
21 |
+
|
22 |
+
# Creating philosopher dictionary
|
23 |
+
philosopher_dictionary = {
|
24 |
+
"stoic": {
|
25 |
+
"generator": stoic_generator,
|
26 |
+
"dataframe": stoic_df
|
27 |
+
},
|
28 |
+
|
29 |
+
"krishnamurti": {
|
30 |
+
"generator": krishnamurti_generator,
|
31 |
+
"dataframe": krishnamurti_df
|
32 |
+
}
|
33 |
+
}
|
34 |
+
|
35 |
+
############### DEFINING FUNCTIONS ###########################
|
36 |
+
|
37 |
+
def ask_philosopher(philosopher, question):
|
38 |
+
""" Return first 5 sentences generated by question for the given philosopher model """
|
39 |
+
|
40 |
+
generator = philosopher_dictionary[philosopher]['generator']
|
41 |
+
answer = generator(question, min_length=100, max_length=120)[0]['generated_text'] # generate about 50 word tokens
|
42 |
+
answer = " ".join(sent_tokenize(answer)[:6]) # Get the first five sentences
|
43 |
+
return answer
|
44 |
+
|
45 |
+
def get_similar_quotes(philosopher, question):
|
46 |
+
""" Return top 5 most similar quotes to the question from a philosopher's dataframe """
|
47 |
+
df = philosopher_dictionary[philosopher]['dataframe']
|
48 |
+
question_embedding = model.encode(question)
|
49 |
+
sims = [util.dot_score(question_embedding, quote_embedding) for quote_embedding in df['Embedding']]
|
50 |
+
ind = np.argpartition(sims, -5)[-5:]
|
51 |
+
similar_sentences = [df['Quotes'][i] for i in ind]
|
52 |
+
top5quotes = pd.DataFrame(data = similar_sentences, columns=["Quotes"], index=range(1,6))
|
53 |
+
top5quotes['Quotes'] = top5quotes['Quotes'].str[:-1].str[:250] + "..."
|
54 |
+
return top5quotes
|
55 |
+
|
56 |
+
def main(question, philosopher):
|
57 |
+
return ask_philosopher(philosopher, question), get_similar_quotes(philosopher, question)
|
58 |
+
|
59 |
+
|
60 |
+
############### BUILDING DEMO ################################
|
61 |
+
with gr.Blocks() as demo:
|
62 |
+
gr.Markdown("""
|
63 |
+
# Ask a Philsopher
|
64 |
+
"""
|
65 |
+
)
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column():
|
68 |
+
inp1 = gr.Textbox(placeholder="Place your question here...", label="Ask a question")
|
69 |
+
inp2 = gr.Dropdown(choices=["stoic", "krishnamurti"], value="stoic", label="Choose a philosopher")
|
70 |
+
|
71 |
+
with gr.Column():
|
72 |
+
out1 = gr.Textbox(
|
73 |
+
lines=3,
|
74 |
+
max_lines=10,
|
75 |
+
label="Answer"
|
76 |
+
)
|
77 |
+
out2 = gr.DataFrame(
|
78 |
+
headers=["Quotes"],
|
79 |
+
max_rows=5,
|
80 |
+
interactive=False,
|
81 |
+
wrap=True)
|
82 |
+
btn = gr.Button("Run")
|
83 |
+
btn.click(fn=main, inputs=[inp1,inp2], outputs=[out1,out2])
|
84 |
+
|
85 |
+
demo.launch()
|