File size: 20,367 Bytes
15d6c34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import codecs as cs
import os
import random
from os.path import join as pjoin

import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
from torch.utils.data._utils.collate import default_collate
from tqdm import tqdm

from models import MotionTransformer
from utils.get_opt import get_opt
from utils.word_vectorizer import POS_enumerator, WordVectorizer

from .evaluator_models import *
from .utils import drop_shapes_from_motion_arr


class EvaluationDataset(Dataset):

    def __init__(self, opt, trainer, dataset, w_vectorizer, mm_num_samples, mm_num_repeats):
        assert mm_num_samples < len(dataset)
        print(opt.model_dir)

        dataloader = DataLoader(dataset, batch_size=1, num_workers=1, shuffle=True)
        epoch, it = trainer.load(pjoin(opt.model_dir, opt.which_epoch + '.tar'))

        generated_motion = []
        min_mov_length = 10 if opt.dataset_name == 't2m' else 6

        trainer.eval_mode()
        trainer.to(opt.device)

        # Pre-process all target captions
        mm_generated_motions = []
        mm_idxs = np.random.choice(len(dataset), mm_num_samples, replace=False)
        mm_idxs = np.sort(mm_idxs)
        all_caption = []
        all_m_lens = []
        all_data = []
        with torch.no_grad():
            for i, data in tqdm(enumerate(dataloader)):
                word_emb, pos_ohot, caption, cap_lens, motions, m_lens, tokens = data
                all_data.append(data)
                tokens = tokens[0].split('_')
                mm_num_now = len(mm_generated_motions)
                is_mm = True if ((mm_num_now < mm_num_samples) and (i == mm_idxs[mm_num_now])) else False
                repeat_times = mm_num_repeats if is_mm else 1
                m_lens = max(m_lens // opt.unit_length * opt.unit_length, min_mov_length * opt.unit_length)
                m_lens = min(m_lens, opt.max_motion_length)
                if isinstance(m_lens, int):
                    m_lens = torch.LongTensor([m_lens]).to(opt.device)
                else:
                    m_lens = m_lens.to(opt.device)
                for t in range(repeat_times):
                    all_m_lens.append(m_lens)
                    all_caption.extend(caption)
                if is_mm:
                    mm_generated_motions.append(0)
        all_m_lens = torch.stack(all_m_lens)
        
        # Generate all sequences
        with torch.no_grad():
            all_pred_motions = trainer.generate(all_caption, all_m_lens, opt.dim_pose)
        
        cur_idx = 0
        mm_generated_motions = []
        with torch.no_grad():
            for i, data_dummy in tqdm(enumerate(dataloader)):
                data = all_data[i]
                word_emb, pos_ohot, caption, cap_lens, motions, m_lens, tokens = data
                tokens = tokens[0].split('_')
                mm_num_now = len(mm_generated_motions)
                is_mm = True if ((mm_num_now < mm_num_samples) and (i == mm_idxs[mm_num_now])) else False
                repeat_times = mm_num_repeats if is_mm else 1
                mm_motions = []
                m_lens = max(m_lens // opt.unit_length * opt.unit_length, min_mov_length * opt.unit_length)
                m_lens = min(m_lens, opt.max_motion_length)
                if isinstance(m_lens, int):
                    m_lens = torch.LongTensor([m_lens]).to(opt.device)
                else:
                    m_lens = m_lens.to(opt.device)
                for t in range(repeat_times):
                    m_len = m_lens[0].item()
                    pred_motions = all_pred_motions[cur_idx][:m_lens[0].item()]
                    assert pred_motions.shape[0] == m_lens[0].item()
                    cur_idx += 1
                    if t == 0:
                        sub_dict = {'motion': pred_motions.cpu().numpy(),
                                    'length': pred_motions.shape[0],
                                    'caption': caption[0],
                                    'cap_len': cap_lens[0].item(),
                                    'tokens': tokens}
                        generated_motion.append(sub_dict)

                    if is_mm:
                        mm_motions.append({
                            'motion': pred_motions.cpu().numpy(),
                            'length': m_lens[0].item()
                        })
                if is_mm:
                    mm_generated_motions.append({'caption': caption[0],
                                                 'tokens': tokens,
                                                 'cap_len': cap_lens[0].item(),
                                                 'mm_motions': mm_motions})
        self.generated_motion = generated_motion
        self.mm_generated_motion = mm_generated_motions
        self.opt = opt
        self.w_vectorizer = w_vectorizer


    def __len__(self):
        return len(self.generated_motion)


    def __getitem__(self, item):
        data = self.generated_motion[item]
        motion, m_length, caption, tokens = data['motion'], data['length'], data['caption'], data['tokens']
        sent_len = data['cap_len']
        pos_one_hots = []
        word_embeddings = []
        for token in tokens:
            word_emb, pos_oh = self.w_vectorizer[token]
            pos_one_hots.append(pos_oh[None, :])
            word_embeddings.append(word_emb[None, :])
        pos_one_hots = np.concatenate(pos_one_hots, axis=0)
        word_embeddings = np.concatenate(word_embeddings, axis=0)

        if m_length < self.opt.max_motion_length:
            motion = np.concatenate([motion,
                                     np.zeros((self.opt.max_motion_length - m_length, motion.shape[1]))
                                     ], axis=0)
        return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens)


def collate_fn(batch):
    batch.sort(key=lambda x: x[3], reverse=True)
    return default_collate(batch)


'''For use of training text motion matching model, and evaluations'''
class Text2MotionDatasetV2(Dataset):
    def __init__(self, opt, mean, std, split_file, w_vectorizer):
        self.opt = opt
        self.w_vectorizer = w_vectorizer
        self.max_length = 20
        self.pointer = 0
        self.max_motion_length = opt.max_motion_length
        min_motion_len = 40 if self.opt.dataset_name =='t2m' else 24

        data_dict = {}
        id_list = []
        with cs.open(split_file, 'r') as f:
            for line in f.readlines():
                id_list.append(line.strip())

        new_name_list = []
        length_list = []
        for name in tqdm(id_list):
            try:
                print(f"attempting to load motion for {name} at {pjoin(opt.motion_dir, name + '.npy')}")
                motion = np.load(pjoin(opt.motion_dir, name + '.npy'))
                if self.opt.dataset_name.lower() == 'grab':
                    motion = drop_shapes_from_motion_arr(motion)
                    assert motion.shape[-1] == opt.dim_pose, f"motion shape {motion.shape} does not match dim_pose {opt.dim_pose}"
                    print(f"grab motion shape: {motion.shape}")
                print(f"len of motion: {len(motion)}")
                # TODO (elmc): verify we don't need this for GRAB data
                # if (len(motion)) < min_motion_len or (len(motion) >= 200):
                #     continue
                text_data = []
                flag = False
                with cs.open(pjoin(opt.text_dir, name + '.txt')) as f:
                    for line in f.readlines():
                        text_dict = {}
                        line_split = line.strip().split('#')
                        caption = line_split[0]
                        f_tag = 0.0
                        to_tag = 0.0
                        # TODO (elmc): add actual tokens back for grab
                        tokens = []
                        if self.opt.dataset_name.lower() != 'grab':
                            tokens = line_split[1].split(' ')
                            f_tag = float(line_split[2])
                            to_tag = float(line_split[3])
                            f_tag = 0.0 if np.isnan(f_tag) else f_tag
                            to_tag = 0.0 if np.isnan(to_tag) else to_tag

                        text_dict['caption'] = caption
                        text_dict['tokens'] = tokens
                        if f_tag == 0.0 and to_tag == 0.0:
                            flag = True
                            text_data.append(text_dict)
                        else:
                            n_motion = motion[int(f_tag*20) : int(to_tag*20)]
                            if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200):
                                continue
                            new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
                            while new_name in data_dict:
                                new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
                            data_dict[new_name] = {'motion': n_motion,
                                                    'length': len(n_motion),
                                                    'text':[text_dict]}
                            new_name_list.append(new_name)
                            length_list.append(len(n_motion))

                if flag:
                    data_dict[name] = {'motion': motion,
                                       'length': len(motion),
                                       'text':text_data}
                    new_name_list.append(name)
                    length_list.append(len(motion))
            except Exception as e:
                # Some motion may not exist in KIT dataset
                print(f"failed to load motion for {name} at {pjoin(opt.motion_dir, name + '.npy')} due to {e}")
                pass

        if not new_name_list or not length_list:
            raise ValueError(f'No data loaded, new_name_list has len {len(new_name_list)} and length_list has len {len(length_list)}')
        name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))
        print(f"LOADED length of name_list: {len(name_list)}")
        self.mean = mean
        self.std = std
        self.length_arr = np.array(length_list)
        self.data_dict = data_dict
        self.name_list = name_list
        # TODO (elmc): so.... V2 is same as V1 but has reset_max_len??
        self.reset_max_len(self.max_length)

    def reset_max_len(self, length):
        assert length <= self.max_motion_length
        self.pointer = np.searchsorted(self.length_arr, length)
        print("Pointer Pointing at %d"%self.pointer)
        self.max_length = length

    def inv_transform(self, data):
        return data * self.std + self.mean

    def __len__(self):
        return len(self.data_dict) - self.pointer

    def __getitem__(self, item):
        idx = self.pointer + item
        data = self.data_dict[self.name_list[idx]]
        motion, m_length, text_list = data['motion'], data['length'], data['text']
        # Randomly select a caption
        text_data = random.choice(text_list)
        caption, tokens = text_data['caption'], text_data['tokens']

        if len(tokens) < self.opt.max_text_len:
            # pad with "unk"
            tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
            sent_len = len(tokens)
            tokens = tokens + ['unk/OTHER'] * (self.opt.max_text_len + 2 - sent_len)
        else:
            # crop
            tokens = tokens[:self.opt.max_text_len]
            tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
            sent_len = len(tokens)
        pos_one_hots = []
        word_embeddings = []
        for token in tokens:
            word_emb, pos_oh = self.w_vectorizer[token]
            pos_one_hots.append(pos_oh[None, :])
            word_embeddings.append(word_emb[None, :])
        pos_one_hots = np.concatenate(pos_one_hots, axis=0)
        word_embeddings = np.concatenate(word_embeddings, axis=0)

        # Crop the motions in to times of 4, and introduce small variations
        if self.opt.unit_length < 10:
            coin2 = np.random.choice(['single', 'single', 'double'])
        else:
            coin2 = 'single'

        if coin2 == 'double':
            m_length = (m_length // self.opt.unit_length - 1) * self.opt.unit_length
        elif coin2 == 'single':
            m_length = (m_length // self.opt.unit_length) * self.opt.unit_length
        idx = random.randint(0, len(motion) - m_length)
        motion = motion[idx:idx+m_length]

        "Z Normalization"
        motion = (motion - self.mean) / self.std

        if m_length < self.max_motion_length:
            motion = np.concatenate([motion,
                                     np.zeros((self.max_motion_length - m_length, motion.shape[1]))
                                     ], axis=0)
        return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens)


def get_dataset_motion_loader(opt_path, batch_size, device):
    opt = get_opt(opt_path, device)

    # Configurations of T2M dataset and KIT dataset is almost the same
    if opt.dataset_name == 't2m' or opt.dataset_name == 'kit' or opt.dataset_name == 'grab':
        print('Loading dataset %s ...' % opt.dataset_name)

        mean_path = pjoin(opt.meta_dir, 'mean.npy')
        std_path = pjoin(opt.meta_dir, 'std.npy')
        if not os.path.exists(mean_path):
            mean = np.zeros(opt.dim_pose)
        else:
            mean = np.load(pjoin(opt.meta_dir, 'mean.npy'))
        if not os.path.exists(std_path):
            std = np.ones(opt.dim_pose)
        else:
            std = np.load(pjoin(opt.meta_dir, 'std.npy'))

        # get glove data via following instructions here
        # https://github.com/mingyuan-zhang/MotionDiffuse/blob/main/text2motion/install.md#data-preparation
        w_vectorizer = WordVectorizer('./data/glove', 'our_vab')
        split_file = pjoin(opt.data_root, 'test.txt')
        dataset = Text2MotionDatasetV2(opt, mean, std, split_file, w_vectorizer)
        dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=4, drop_last=True,
                                collate_fn=collate_fn, shuffle=True)
    else:
        raise KeyError('Dataset not Recognized !!')

    print('Ground Truth Dataset Loading Completed!!!')
    return dataloader, dataset


class MMGeneratedDataset(Dataset):
    def __init__(self, opt, motion_dataset, w_vectorizer):
        self.opt = opt
        self.dataset = motion_dataset.mm_generated_motion
        self.w_vectorizer = w_vectorizer

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, item):
        data = self.dataset[item]
        mm_motions = data['mm_motions']
        m_lens = []
        motions = []
        for mm_motion in mm_motions:
            m_lens.append(mm_motion['length'])
            motion = mm_motion['motion']
            if len(motion) < self.opt.max_motion_length:
                motion = np.concatenate([motion,
                                         np.zeros((self.opt.max_motion_length - len(motion), motion.shape[1]))
                                         ], axis=0)
            motion = motion[None, :]
            motions.append(motion)
        m_lens = np.array(m_lens, dtype=np.int)
        motions = np.concatenate(motions, axis=0)
        sort_indx = np.argsort(m_lens)[::-1].copy()
        # print(m_lens)
        # print(sort_indx)
        # print(m_lens[sort_indx])
        m_lens = m_lens[sort_indx]
        motions = motions[sort_indx]
        return motions, m_lens



def get_motion_loader(opt, batch_size, trainer, ground_truth_dataset, mm_num_samples, mm_num_repeats):

    # Currently the configurations of two datasets are almost the same
    if opt.dataset_name == 't2m' or opt.dataset_name == 'kit':
        w_vectorizer = WordVectorizer('./data/glove', 'our_vab')
    else:
        raise KeyError('Dataset not recognized!!')
    print('Generating %s ...' % opt.name)

    dataset = EvaluationDataset(opt, trainer, ground_truth_dataset, w_vectorizer, mm_num_samples, mm_num_repeats)
    mm_dataset = MMGeneratedDataset(opt, dataset, w_vectorizer)

    motion_loader = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn, drop_last=True, num_workers=4)
    mm_motion_loader = DataLoader(mm_dataset, batch_size=1, num_workers=1)

    print('Generated Dataset Loading Completed!!!')

    return motion_loader, mm_motion_loader


def build_models(opt):
    movement_enc = MovementConvEncoder(opt.dim_pose-4, opt.dim_movement_enc_hidden, opt.dim_movement_latent)
    text_enc = TextEncoderBiGRUCo(word_size=opt.dim_word,
                                  pos_size=opt.dim_pos_ohot,
                                  hidden_size=opt.dim_text_hidden,
                                  output_size=opt.dim_coemb_hidden,
                                  device=opt.device)

    motion_enc = MotionEncoderBiGRUCo(input_size=opt.dim_movement_latent,
                                      hidden_size=opt.dim_motion_hidden,
                                      output_size=opt.dim_coemb_hidden,
                                      device=opt.device)

    checkpoint = torch.load(pjoin('data/pretrained_models', opt.dataset_name, 'text_mot_match', 'model', 'finest.tar'),
                            map_location=opt.device)
    movement_enc.load_state_dict(checkpoint['movement_encoder'])
    text_enc.load_state_dict(checkpoint['text_encoder'])
    motion_enc.load_state_dict(checkpoint['motion_encoder'])
    print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch']))
    return text_enc, motion_enc, movement_enc


class EvaluatorModelWrapper(object):

    def __init__(self, opt):

        if opt.dataset_name == 't2m':
            opt.dim_pose = 263
        elif opt.dataset_name == 'kit':
            opt.dim_pose = 251
        elif opt.dataset_name == 'grab':
            opt.dim_pose = 212
        else:
            raise KeyError('Dataset not Recognized!!!')

        opt.dim_word = 300
        opt.max_motion_length = 196
        opt.dim_pos_ohot = len(POS_enumerator)
        opt.dim_motion_hidden = 1024
        opt.max_text_len = 20
        opt.dim_text_hidden = 512
        opt.dim_coemb_hidden = 512

        self.text_encoder, self.motion_encoder, self.movement_encoder = build_models(opt)
        self.opt = opt
        self.device = opt.device

        self.text_encoder.to(opt.device)
        self.motion_encoder.to(opt.device)
        self.movement_encoder.to(opt.device)

        self.text_encoder.eval()
        self.motion_encoder.eval()
        self.movement_encoder.eval()

    # Please note that the results does not following the order of inputs
    def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens):
        with torch.no_grad():
            word_embs = word_embs.detach().to(self.device).float()
            pos_ohot = pos_ohot.detach().to(self.device).float()
            motions = motions.detach().to(self.device).float()

            align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
            motions = motions[align_idx]
            m_lens = m_lens[align_idx]

            '''Movement Encoding'''
            movements = self.movement_encoder(motions[..., :-4]).detach()
            m_lens = m_lens // self.opt.unit_length
            motion_embedding = self.motion_encoder(movements, m_lens)

            '''Text Encoding'''
            text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens)
            text_embedding = text_embedding[align_idx]
        return text_embedding, motion_embedding

    # Please note that the results does not following the order of inputs
    def get_motion_embeddings(self, motions, m_lens):
        with torch.no_grad():
            motions = motions.detach().to(self.device).float()

            align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
            motions = motions[align_idx]
            m_lens = m_lens[align_idx]

            '''Movement Encoding'''
            movements = self.movement_encoder(motions[..., :-4]).detach()
            m_lens = m_lens // self.opt.unit_length
            motion_embedding = self.motion_encoder(movements, m_lens)
        return motion_embedding