Spaces:
Sleeping
Sleeping
File size: 23,365 Bytes
15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 fa0aa6d 15d6c34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 |
import argparse
import logging as log
import os
from collections import defaultdict
from os.path import join as pjoin
from typing import Dict, Optional, Tuple
import pyrender
from tqdm import tqdm
import trimesh
import numpy as np
import os
import imageio
import numpy as np
import smplx
import torch
from numpy.typing import ArrayLike
from torch import Tensor
log.basicConfig(
level=log.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
MOCAP_DATASETS = {"egobody", "grab", "humanml", "grab_motion"}
DATA_DIR = "data"
MODELS_DIR = "models"
MOCAP_FACE_DIR = (
f"{DATA_DIR}/face_motion_data/smplx_322" # contains face motion data only
)
MOTION_DIR = f"{DATA_DIR}/motion_data/smplx_322"
ACTION_LABEL_DIR = f"{DATA_DIR}/semantic_labels"
EMOTION_LABEL_DIR = f"{DATA_DIR}/face_texts"
"""
Page 12 of https://arxiv.org/pdf/2307.00818.pdf shows:
smpl-x = {θb, θh, θf , ψ, r} = 3D body pose, 3D hand pose, jaw pose, facial expression, global root orientation, global translation
dims: (22x3, 30x3, 1x3, 1x50, 1x3) = (66, 90, 3, 50, 3, 3)
NOTE: I think they are wrong about n_body_joints though, data indicates it's actually 21x3 = 63, not 22x3 = 66
"""
MY_REPO = os.path.abspath("")
log.info(f"MY_REPO: {MY_REPO}")
NUM_BODY_JOINTS = (
23 - 2
) # SMPL has hand joints but we're replacing them with more detailed ones by SMLP-X, paper: 22x3 total body dims * not sure why paper says 22
NUM_JAW_JOINTS = 1 # 1x3 total jaw dims
# Motion-X paper says there
NUM_HAND_JOINTS = 15 # x2 for each hand -> 30x3 total hand dims
NUM_JOINTS = NUM_BODY_JOINTS + NUM_HAND_JOINTS * 2 + NUM_JAW_JOINTS # 21 + 30 + 1 = 52
NUM_FACIAL_EXPRESSION_DIMS = (
50 # as per Motion-X paper, but why is default 10 in smplx code then?
)
FACE_SHAPE_DIMS = 100
BODY_SHAPE_DIMS = 10 # betas
ROOT_DIMS = 3
TRANS_DIMS = 3 # same as root, no?
pose_type_to_dims = {
"pose_body": NUM_BODY_JOINTS * 3,
"pose_hand": NUM_HAND_JOINTS * 2 * 3, # both hands
"pose_jaw": NUM_JAW_JOINTS * 3,
"face_expr": NUM_FACIAL_EXPRESSION_DIMS * 1, # double check
"face_shape": FACE_SHAPE_DIMS * 1, # double check
"root_orient": ROOT_DIMS * 1,
"betas": BODY_SHAPE_DIMS * 1,
"trans": TRANS_DIMS * 1,
}
def names_to_arrays(root_dir, names, drop_shapes=True):
all_arrays = []
for name in names:
# Load each NumPy array and add it to the list
array = np.load(pjoin(f"{root_dir}/joints", f"{name}.npy"))
# drop shapes -> 212 dims
if drop_shapes:
array = drop_shapes_from_motion_arr(array)
all_arrays.append(array)
return all_arrays
def get_seq_names(file_path):
with open(file_path, "r") as f:
names = f.readlines()
names = [name.strip() for name in names]
return names
def get_data_path(dataset_dir: str, seq: str, file: str) -> str:
# MY_REPO/face_motion_data/smplx_322/GRAB/s1/airplane_fly_1.npy
top_dir = MOCAP_FACE_DIR if dataset_dir.lower() in MOCAP_DATASETS else MOTION_DIR
path = f"{os.path.join(MY_REPO, top_dir, dataset_dir, seq, file)}.npy"
return path
def get_label_paths(dataset_dir: str, seq: str, file: str) -> Dict[str, str]:
# MY_REPO/MotionDiffuse/face_texts/GRAB/s1/airplane_fly_1.txt
action_path = (
f"{os.path.join(MY_REPO, ACTION_LABEL_DIR, dataset_dir, seq, file)}.txt"
)
emotion_path = (
f"{os.path.join(MY_REPO, EMOTION_LABEL_DIR, dataset_dir, seq, file)}.txt"
)
paths = {"action": action_path, "emotion": emotion_path}
return paths
def load_data_as_dict(dataset_dir: str, seq: str, file: str) -> Dict[str, Tensor]:
path = get_data_path(dataset_dir, seq, file)
motion = np.load(path)
motion = torch.tensor(motion).float()
return {
"root_orient": motion[:, :3], # controls the global root orientation
"pose_body": motion[:, 3 : 3 + 63], # controls the body
"pose_hand": motion[:, 66 : 66 + 90], # controls the finger articulation
"pose_jaw": motion[:, 66 + 90 : 66 + 93], # controls the jaw pose
"face_expr": motion[:, 159 : 159 + 50], # controls the face expression
"face_shape": motion[:, 209 : 209 + 100], # controls the face shape
"trans": motion[:, 309 : 309 + 3], # controls the global body position
"betas": motion[:, 312:], # controls the body shape. Body shape is static
}
def motion_arr_to_dict(
motion_arr: ArrayLike, shapes_dropped=False
) -> Dict[str, Tensor]:
# TODO (elmc): why did I need to convert to tensor again???
motion_arr = torch.tensor(motion_arr).float()
motion_dict = {
"root_orient": motion_arr[:, :3], # controls the global root orientation
"pose_body": motion_arr[:, 3 : 3 + 63], # controls the body
"pose_hand": motion_arr[:, 66 : 66 + 90], # controls the finger articulation
"pose_jaw": motion_arr[:, 66 + 90 : 66 + 93], # controls the jaw pose
"face_expr": motion_arr[:, 159 : 159 + 50], # controls the face expression
}
if not shapes_dropped:
motion_dict["face_shape"] = motion_arr[
:, 209 : 209 + 100
] # controls the face shape
motion_dict["trans"] = motion_arr[
:, 309 : 309 + 3
] # controls the global body position
motion_dict["betas"] = motion_arr[
:, 312:
] # controls the body shape. Body shape is static
else:
motion_dict["trans"] = motion_arr[:, 209:] # controls the global body position
return motion_dict
def drop_shapes_from_motion_arr(motion_arr: ArrayLike) -> ArrayLike:
if isinstance(motion_arr, torch.Tensor):
new_motion_arr = motion_arr.numpy()
# Slice the array to exclude 'face_shape' and 'betas'
new_motion_arr = np.concatenate(
(motion_arr[:, :209], motion_arr[:, 309:312]), axis=1
)
return new_motion_arr
def load_label_from_file(file_path: str) -> str:
with open(file_path, "r") as file:
# Read the contents of the file into a string
label = file.read()
return label
def load_label(dataset_dir: str, seq: str, file_path: str) -> Dict[str, str]:
paths = get_label_paths(dataset_dir, seq, file_path)
action_path, emotion_path = paths["action"], paths["emotion"]
log.info(f"loading labels from {action_path} and {emotion_path}")
paths = {}
with open(action_path, "r") as file:
# Read the contents of the file into a string
action_label = file.read()
with open(emotion_path, "r") as file:
# Read the contents of the file into a string
emotion_label = file.read()
return {"action": action_label, "emotion": emotion_label}
def label_code(full_label):
# take first 3 letters of label
# surprise -> sur
# airplane -> air
return full_label[:3]
def get_seq_type(motion_label_dir, file_name):
# e.g. s5/airplane_fly_1 -> airplane fly (motion label)
seq_type_path = pjoin(motion_label_dir, f"{file_name}.txt")
with open(seq_type_path, "r") as f:
seq_type = f.readline().strip()
return seq_type
def calc_mean_stddev_pose(arrays):
# all_arrays = []
# for file_path in file_list:
# # Load each NumPy array and add it to the list
# array = np.load(file_path)
# all_arrays.append(array)
# Concatenate all arrays along the first axis (stacking them on top of each other)
concatenated_arrays = np.concatenate(arrays, axis=0)
# Calculate the mean and standard deviation across all arrays
mean = np.mean(concatenated_arrays, axis=0)
stddev = np.std(concatenated_arrays, axis=0)
return mean, stddev
def get_info_from_file(file_path, emotions_label_dir, motion_label_dir):
# train_names = get_seq_names(pjoin(data_dir, "train.txt"))
names = get_seq_names(file_path)
seq_type_to_emotions = defaultdict(set)
emotions_count = defaultdict(int)
seq_type_count = defaultdict(int)
obj_count = defaultdict(int)
code_to_label = {}
emotion_to_names = defaultdict(list)
n_seq = len(names)
for name in names:
seq_type = get_seq_type(motion_label_dir, name)
emotion = load_label_from_file(pjoin(emotions_label_dir, f"{name}.txt"))
object_ = seq_type.split(" ")[0]
seq_type_to_emotions[seq_type].add(emotion)
emo_code = label_code(emotion)
emotions_count[emo_code] += 1
seq_type_count[seq_type] += 1
obj_code = label_code(object_)
obj_count[label_code(object_)] += 1
code_to_label[emo_code] = emotion
code_to_label[obj_code] = object_
emotion_to_names[emo_code].append(name)
unique_emotions = set([code_to_label[code] for code in emotions_count])
info_dict = {
"seq_type_to_emotions": seq_type_to_emotions,
"emotions_count": emotions_count,
"seq_type_count": seq_type_count,
"obj_count": obj_count,
"code_to_label": code_to_label,
"emotion_to_names": emotion_to_names,
"unique_emotions": unique_emotions,
"n_seq": n_seq,
"code_to_label": code_to_label,
}
return info_dict
def to_smplx_dict(
motion_dict: Dict[str, Tensor], timestep_range: Optional[Tuple[int, int]] = None
) -> Dict[str, Tensor]:
if timestep_range is None:
# get all timesteps
timestep_range = (0, len(motion_dict["pose_body"]))
smplx_params = {
"global_orient": motion_dict["root_orient"][
timestep_range[0] : timestep_range[1]
], # controls the global root orientation
"body_pose": motion_dict["pose_body"][
timestep_range[0] : timestep_range[1]
], # controls the body
"left_hand_pose": motion_dict["pose_hand"][
timestep_range[0] : timestep_range[1]
][:, : NUM_HAND_JOINTS * 3], # controls the finger articulation
"right_hand_pose": motion_dict["pose_hand"][
timestep_range[0] : timestep_range[1]
][:, NUM_HAND_JOINTS * 3 :],
"expression": motion_dict["face_expr"][
timestep_range[0] : timestep_range[1]
], # controls the face expression
"jaw_pose": motion_dict["pose_jaw"][
timestep_range[0] : timestep_range[1]
], # controls the jaw pose
# 'face_shape': motion_dict['face_shape'][timestep], # controls the face shape, drop since we don't care to train on this
"transl": motion_dict["trans"][
timestep_range[0] : timestep_range[1]
], # controls the global body position
# "betas": motion["betas"][
# timestep_range[0] : timestep_range[1]
# ], # controls the body shape. Body shape is static, drop since we don't care to train on this
}
return smplx_params
def smplx_dict_to_array(smplx_dict):
# convert smplx dict to array
# list keys to ensure known order when iterating over dict
keys = [
"global_orient",
"body_pose",
"left_hand_pose",
"right_hand_pose",
"expression",
"jaw_pose",
"transl",
]
smplx_array = []
for key in keys:
smplx_array.append(smplx_dict[key])
smplx_array = torch.cat(smplx_array, dim=1)
return smplx_array
def save_gif(gif_path, gif_frames, duration=0.01):
if gif_frames:
print(f"Saving GIF with {len(gif_frames)} frames to {gif_path}")
imageio.mimsave(uri=gif_path, ims=gif_frames, duration=duration)
else:
print("No frames to save.")
# based on https://github.com/vchoutas/smplx/blob/main/examples/demo.py
def render_meshes(output, should_save_gif=False, gif_path=None):
should_display = not should_save_gif
vertices_list = output.vertices.detach().cpu().numpy().squeeze()
joints_list = output.joints.detach().cpu().numpy().squeeze()
# TODO (elmc): why do I wrap these in a list again?
if len(vertices_list.shape) == 2:
vertices_list = [vertices_list]
joints_list = [joints_list]
scene = pyrender.Scene()
if should_display:
viewer = pyrender.Viewer(scene, run_in_thread=True)
mesh_node = None
joints_node = None
# Rotation matrix (90 degrees around the X-axis)
rot = trimesh.transformations.rotation_matrix(np.radians(90), [1, 0, 0])
gif_frames = []
if should_save_gif:
os.makedirs(os.path.dirname(gif_path), exist_ok=True)
try:
for i in tqdm(range(len(vertices_list))):
vertices = vertices_list[i]
joints = joints_list[i]
# print("Vertices shape =", vertices.shape)
# print("Joints shape =", joints.shape)
# from their demo script
plotting_module = "pyrender"
plot_joints = False
if plotting_module == "pyrender":
vertex_colors = np.ones([vertices.shape[0], 4]) * [0.3, 0.3, 0.3, 0.8]
tri_mesh = trimesh.Trimesh(
vertices, model.faces, vertex_colors=vertex_colors
)
# Apply rotation
tri_mesh.apply_transform(rot)
##### RENDER LOCK #####
if should_display:
viewer.render_lock.acquire()
if mesh_node:
scene.remove_node(mesh_node)
mesh = pyrender.Mesh.from_trimesh(tri_mesh)
mesh_node = scene.add(mesh)
camera = pyrender.PerspectiveCamera(yfov=np.pi / 3.0, aspectRatio=1.0)
min_bound, max_bound = mesh.bounds
# Calculate the center of the bounding box
center = (min_bound + max_bound) / 2
# Calculate the extents (the dimensions of the bounding box)
extents = max_bound - min_bound
# Estimate a suitable distance
distance = max(extents) * 2 # Adjust the multiplier as needed
# Create a camera pose matrix
cam_pose = np.array(
[
[1.0, 0, 0, center[0]],
[0, 1.0, 0, center[1] - 1.0],
[0, 0, 1.0, center[2] + distance + 0.5],
[0, 0, 0, 1],
]
)
# Rotate around X-axis
# Rotate around X-axis
angle = np.radians(90)
cos_angle = np.cos(angle)
sin_angle = np.sin(angle)
rot_x = np.array(
[
[1, 0, 0, 0],
[0, cos_angle, -sin_angle, 0],
[0, sin_angle, cos_angle, 0],
[0, 0, 0, 1],
]
)
cam_pose = np.matmul(cam_pose, rot_x)
cam_pose[:3, 3] += np.array([0, -2.5, -3.5])
scene.add(camera, pose=cam_pose)
# Add light for better visualization
light = pyrender.DirectionalLight(color=np.ones(3), intensity=2.0)
scene.add(light, pose=cam_pose)
# TODO: rotation doesn't work here, so appears sideways
if plot_joints:
sm = trimesh.creation.uv_sphere(radius=0.005)
sm.visual.vertex_colors = [0.9, 0.1, 0.1, 1.0]
tfs = np.tile(np.eye(4), (len(joints), 1, 1))
# tfs[:, :3, 3] = joints
for i, joint in enumerate(joints):
tfs[i, :3, :3] = rot[:3, :3]
tfs[i, :3, 3] = joint
joints_pcl = pyrender.Mesh.from_trimesh(sm, poses=tfs)
if joints_node:
scene.remove_node(joints_node)
joints_node = scene.add(joints_pcl)
if should_save_gif:
r = pyrender.OffscreenRenderer(
viewport_width=640, viewport_height=480
)
color, _ = r.render(scene)
gif_frames.append(color)
r.delete() # Free up the resources
###### RENDER LOCK RELEASE #####
if should_display:
viewer.render_lock.release()
except KeyboardInterrupt:
if should_display:
viewer.close_external()
save_gif(gif_path, gif_frames)
finally:
save_gif(gif_path, gif_frames)
def get_numpy_file_path(prompt, epoch, n_frames):
# e.g. "airplane_fly_1_1000_60f.npy"
prompt_no_spaces = prompt.replace(" ", "_")
return f"{prompt_no_spaces}_{epoch}_{n_frames}f"
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-mn",
"--min_t",
type=int,
required=False,
default=0,
help="Minimum number of timesteps to render",
)
parser.add_argument(
"-mx",
"--max_t",
type=int,
required=False,
help="Maximum number of timesteps to render",
)
parser.add_argument(
"-dm",
"--display_mesh",
action="store_true",
required=False,
default=False,
help="Display mesh if this flag is present",
)
# for now just specifies file name (with spaces) made by inference
parser.add_argument(
"-p",
"--prompt",
type=str,
required=False,
default="",
help="Prompt for inference display",
)
parser.add_argument(
"-sf",
"--seq_file",
type=str,
required=False,
default="",
help="file for non-inference display",
)
# add model_path arg
parser.add_argument(
"-m",
"--model_path",
type=str,
required=False,
default="",
help="Path to model directory e.g. ./checkpoints/grab/grab_baseline_dp_2gpu_8layers_1000",
)
parser.add_argument(
"-sg",
"--save_gif",
action="store_true",
required=False,
default=False,
help="Save gif if this flag is present",
)
# add which_epoch
parser.add_argument(
"-we",
"--which_epoch",
type=str,
required=True,
help="which epoch to load",
)
args = parser.parse_args()
prompt = args.prompt
is_inference = len(prompt) > 0
if args.seq_file != "" and args.prompt != "":
log.error(
"cannot provide both prompt and seq_file; if trying to verify model inference, use --prompt, otherwise specify numpy --seq_file name to display"
)
exit(1)
elif args.seq_file == "" and args.prompt == "":
log.error(
"must provide either prompt or seq_file; if trying to verify model inference, use --prompt, otherwise specify numpy --seq_file name to display"
)
exit(1)
if not is_inference:
name = args.seq_file
data_root = "./data/GRAB"
motion_dir = pjoin(data_root, "joints")
else:
log.info("converting prompt into file name")
name = get_numpy_file_path(prompt, args.which_epoch, args.max_t - args.min_t)
model_type = args.model_path
motion_dir = pjoin(model_type, "outputs")
motion_path = pjoin(motion_dir, name + ".npy")
log.info(f"loading motion from {motion_path}")
motion_arr = np.load(motion_path)
t = 999
mean_path = "/work3/s222376/MotionDiffuse2/text2motion/checkpoints/grab/md_fulem_2g_excl_196_seed42/meta/mean.npy"
std_path = "/work3/s222376/MotionDiffuse2/text2motion/checkpoints/grab/md_fulem_2g_excl_196_seed42/meta/std.npy"
mean = np.load(mean_path)
std = np.load(std_path)
# do range skipping by 100
list_ = [t for t in range(10, 91, 10)]
list_ += [t for t in range(100, 200, 30)]
for t in list_:
name = f"sample_tensor([{t}])"
# breakpoint()
motion_arr = np.load(
f"/work3/s222376/MotionDiffuse2/text2motion/generation_samples/{name}.npy"
)
motion_arr = np.squeeze(motion_arr)
motion_arr = motion_arr * std + mean
# drop shapes for ground-truth to have same dimensionality as inference
# for fair comparisons and reducing bugs
if not is_inference:
# directly get smplx dimensionality by dropping body and face shape data
print("warning, dropping body and face shape data")
motion_arr = drop_shapes_from_motion_arr(motion_arr)
assert (
motion_arr.shape[1] == 212
), f"expected 212 dims, got {motion_arr.shape[1]}"
# our MotionDiffuse predicts motion data that doesn't include face and body shape
motion_dict = motion_arr_to_dict(motion_arr, shapes_dropped=True)
n_points = len(motion_dict["pose_body"])
min_t = args.min_t
max_t = args.max_t or n_points
if max_t > n_points:
max_t = n_points
timestep_range = (min_t, max_t)
frames = max_t - min_t
log.info(f"POSES: {n_points}")
# checks data has expected shape
tot_dims = 0
for key in motion_dict:
dims = motion_dict[key].shape[1]
exp_dims = pose_type_to_dims.get(key)
tot_dims += motion_dict[key].shape[1]
log.info(f"{key}: {motion_dict[key].shape}, dims {dims}, exp: {exp_dims}")
log.info(f"total MOTION-X dims: {tot_dims}\n")
smplx_params = to_smplx_dict(motion_dict, timestep_range)
tot_smplx_dims = 0
for key in smplx_params:
tot_smplx_dims += smplx_params[key].shape[1]
log.info(f"{key}: {smplx_params[key].shape}")
log.info(f"TOTAL SMPLX dims: {tot_smplx_dims}\n")
if not is_inference:
action_label_path = pjoin(data_root, "texts", name + ".txt")
action_label = load_label_from_file(action_label_path)
emotion_label_path = pjoin(data_root, "face_texts", name + ".txt")
emotion_label = load_label_from_file(emotion_label_path)
log.info(f"action: {action_label}")
log.info(f"emotion: {emotion_label}")
if is_inference:
emotion_label = args.prompt.split(" ")[0]
if args.display_mesh:
model_folder = os.path.join(MY_REPO, MODELS_DIR, "smplx")
batch_size = max_t - min_t
log.info(f"calculating mesh with batch size {batch_size}")
model = smplx.SMPLX(
model_folder,
use_pca=False, # our joints are not in pca space
num_expression_coeffs=NUM_FACIAL_EXPRESSION_DIMS,
batch_size=batch_size,
)
output = model.forward(**smplx_params, return_verts=True)
log.info(f"output size {output.vertices.shape}")
log.info(f"output size {output.joints.shape}")
log.info("rendering mesh")
model_name = (
args.model_path.split("/")[-1] if args.model_path else "ground_truth"
)
gif_path = f"gifs/{model_name}/{name}_{emotion_label}.gif"
render_meshes(output, gif_path=gif_path, should_save_gif=args.save_gif)
log.warning(
"if you don't see the mesh animation, make sure you are running on graphics compatible DTU machine (vgl xterm)."
)
|