File size: 4,871 Bytes
15d6c34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import math
import os
import random
import time
import torch

import numpy as np
import torch as th
from PIL import Image
from scipy.ndimage import gaussian_filter

from utils import paramUtil


def set_random_seed(seed: int, using_cuda: bool = False) -> None:
    """Seed the different random generators.

    :param seed:
    :param using_cuda:
    """
    # Seed python RNG
    random.seed(seed)
    # Seed numpy RNG
    np.random.seed(seed)
    # seed the RNG for all devices (both CPU and CUDA)
    th.manual_seed(seed)

    if using_cuda:
        # Deterministic operations for CuDNN, it may impact performances
        th.backends.cudnn.deterministic = True
        th.backends.cudnn.benchmark = False

def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)

COLORS = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
          [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
          [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]

MISSING_VALUE = -1

def save_image(image_numpy, image_path):
    img_pil = Image.fromarray(image_numpy)
    img_pil.save(image_path)


def save_logfile(log_loss, save_path):
    with open(save_path, 'wt') as f:
        for k, v in log_loss.items():
            w_line = k
            for digit in v:
                w_line += ' %.3f' % digit
            f.write(w_line + '\n')


def print_current_loss(start_time, niter_state, losses, epoch=None, inner_iter=None):

    def as_minutes(s):
        m = math.floor(s / 60)
        s -= m * 60
        return '%dm %ds' % (m, s)

    def time_since(since, percent):
        now = time.time()
        s = now - since
        es = s / percent
        rs = es - s
        return '%s (- %s)' % (as_minutes(s), as_minutes(rs))

    if epoch is not None:
        print('epoch: %3d niter: %6d  inner_iter: %4d' % (epoch, niter_state, inner_iter), end=" ")

    now = time.time()
    message = '%s'%(as_minutes(now - start_time))

    for k, v in losses.items():
        message += ' %s: %.4f ' % (k, v)
    print(message)


def compose_gif_img_list(img_list, fp_out, duration):
    img, *imgs = [Image.fromarray(np.array(image)) for image in img_list]
    img.save(fp=fp_out, format='GIF', append_images=imgs, optimize=False,
             save_all=True, loop=0, duration=duration)


def save_images(visuals, image_path):
    if not os.path.exists(image_path):
        os.makedirs(image_path)

    for i, (label, img_numpy) in enumerate(visuals.items()):
        img_name = '%d_%s.jpg' % (i, label)
        save_path = os.path.join(image_path, img_name)
        save_image(img_numpy, save_path)


def save_images_test(visuals, image_path, from_name, to_name):
    if not os.path.exists(image_path):
        os.makedirs(image_path)

    for i, (label, img_numpy) in enumerate(visuals.items()):
        img_name = "%s_%s_%s" % (from_name, to_name, label)
        save_path = os.path.join(image_path, img_name)
        save_image(img_numpy, save_path)


def compose_and_save_img(img_list, save_dir, img_name, col=4, row=1, img_size=(256, 200)):
    # print(col, row)
    compose_img = compose_image(img_list, col, row, img_size)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    img_path = os.path.join(save_dir, img_name)
    # print(img_path)
    compose_img.save(img_path)


def compose_image(img_list, col, row, img_size):
    to_image = Image.new('RGB', (col * img_size[0], row * img_size[1]))
    for y in range(0, row):
        for x in range(0, col):
            from_img = Image.fromarray(img_list[y * col + x])
            # print((x * img_size[0], y*img_size[1],
            #                           (x + 1) * img_size[0], (y + 1) * img_size[1]))
            paste_area = (x * img_size[0], y*img_size[1],
                                      (x + 1) * img_size[0], (y + 1) * img_size[1])
            to_image.paste(from_img, paste_area)
            # to_image[y*img_size[1]:(y + 1) * img_size[1], x * img_size[0] :(x + 1) * img_size[0]] = from_img
    return to_image


def list_cut_average(ll, intervals):
    if intervals == 1:
        return ll

    bins = math.ceil(len(ll) * 1.0 / intervals)
    ll_new = []
    for i in range(bins):
        l_low = intervals * i
        l_high = l_low + intervals
        l_high = l_high if l_high < len(ll) else len(ll)
        ll_new.append(np.mean(ll[l_low:l_high]))
    return ll_new


def motion_temporal_filter(motion, sigma=1):
    motion = motion.reshape(motion.shape[0], -1)
    # print(motion.shape)
    for i in range(motion.shape[1]):
        motion[:, i] = gaussian_filter(motion[:, i], sigma=sigma, mode="nearest")
    return motion.reshape(motion.shape[0], -1, 3)


def get_device(args):
    return torch.device('cuda:%d' % args.gpu_id if args.gpu_id != -1 else 'cpu')