Spaces:
Sleeping
Sleeping
Elle McFarlane
commited on
Commit
·
a02a7e6
0
Parent(s):
add trainers
Browse files
text2motion/trainers/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ddpm_trainer import DDPMTrainer
|
2 |
+
|
3 |
+
|
4 |
+
__all__ = ['DDPMTrainer']
|
text2motion/trainers/ddpm_trainer.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from collections import OrderedDict
|
3 |
+
from os.path import join as pjoin
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.optim as optim
|
8 |
+
from mmcv.runner import get_dist_info
|
9 |
+
from torch.nn.utils import clip_grad_norm_
|
10 |
+
|
11 |
+
# import wandb
|
12 |
+
from datasets import build_dataloader
|
13 |
+
from mmcv.runner import get_dist_info
|
14 |
+
from models.gaussian_diffusion import (GaussianDiffusion, LossType,
|
15 |
+
ModelMeanType, ModelVarType,
|
16 |
+
create_named_schedule_sampler,
|
17 |
+
get_named_beta_schedule)
|
18 |
+
from utils.utils import print_current_loss
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
class DDPMTrainer(object):
|
24 |
+
|
25 |
+
def __init__(self, args, encoder):
|
26 |
+
self.opt = args
|
27 |
+
self.device = args.device
|
28 |
+
self.encoder = encoder # MotionTransformer from train.build_models
|
29 |
+
self.diffusion_steps = args.diffusion_steps
|
30 |
+
sampler = 'uniform'
|
31 |
+
beta_scheduler = 'linear'
|
32 |
+
betas = get_named_beta_schedule(beta_scheduler, self.diffusion_steps)
|
33 |
+
self.diffusion = GaussianDiffusion(
|
34 |
+
betas=betas,
|
35 |
+
model_mean_type=ModelMeanType.EPSILON,
|
36 |
+
model_var_type=ModelVarType.FIXED_SMALL,
|
37 |
+
loss_type=LossType.MSE
|
38 |
+
)
|
39 |
+
self.sampler = create_named_schedule_sampler(sampler, self.diffusion)
|
40 |
+
self.sampler_name = sampler
|
41 |
+
|
42 |
+
if args.is_train:
|
43 |
+
self.mse_criterion = torch.nn.MSELoss(reduction='none')
|
44 |
+
self.to(self.device)
|
45 |
+
|
46 |
+
@staticmethod
|
47 |
+
def zero_grad(opt_list):
|
48 |
+
for opt in opt_list:
|
49 |
+
opt.zero_grad()
|
50 |
+
|
51 |
+
@staticmethod
|
52 |
+
def clip_norm(network_list):
|
53 |
+
for network in network_list:
|
54 |
+
clip_grad_norm_(network.parameters(), 0.5)
|
55 |
+
|
56 |
+
@staticmethod
|
57 |
+
def step(opt_list):
|
58 |
+
for opt in opt_list:
|
59 |
+
opt.step()
|
60 |
+
|
61 |
+
def forward(self, batch_data, eval_mode=False):
|
62 |
+
caption, motions, m_lens = batch_data
|
63 |
+
motions = motions.detach().to(self.device).float()
|
64 |
+
|
65 |
+
self.caption = caption
|
66 |
+
self.motions = motions
|
67 |
+
x_start = motions
|
68 |
+
B, T = x_start.shape[:2]
|
69 |
+
cur_len = torch.LongTensor([min(T, m_len) for m_len in m_lens]).to(self.device)
|
70 |
+
t, _ = self.sampler.sample(B, x_start.device)
|
71 |
+
output = self.diffusion.training_losses(
|
72 |
+
model=self.encoder, # MotionDiffusion is encoder
|
73 |
+
x_start=x_start,
|
74 |
+
t=t,
|
75 |
+
model_kwargs={"text": caption, "length": cur_len}
|
76 |
+
)
|
77 |
+
self.real_noise = output['target']
|
78 |
+
self.fake_noise = output['pred']
|
79 |
+
try:
|
80 |
+
self.src_mask = self.encoder.module.generate_src_mask(T, cur_len).to(x_start.device)
|
81 |
+
except:
|
82 |
+
self.src_mask = self.encoder.generate_src_mask(T, cur_len).to(x_start.device)
|
83 |
+
|
84 |
+
def generate_batch(self, caption, m_lens, dim_pose):
|
85 |
+
# import pdb; pdb.set_trace()
|
86 |
+
# xf_proj they explain here https://github.com/mingyuan-zhang/MotionDiffuse/issues/10
|
87 |
+
# is an overall semantic feature to represent given language description,
|
88 |
+
# a common choice in NLP and motion gen & GLIDE is to use last token to represent overall characteristics
|
89 |
+
xf_proj, xf_out = self.encoder.encode_text(caption, self.device)
|
90 |
+
|
91 |
+
B = len(caption)
|
92 |
+
T = min(m_lens.max(), self.encoder.num_frames)
|
93 |
+
output = self.diffusion.p_sample_loop(
|
94 |
+
self.encoder,
|
95 |
+
(B, T, dim_pose),
|
96 |
+
clip_denoised=False,
|
97 |
+
progress=True,
|
98 |
+
model_kwargs={
|
99 |
+
'xf_proj': xf_proj,
|
100 |
+
'xf_out': xf_out,
|
101 |
+
'length': m_lens
|
102 |
+
})
|
103 |
+
return output
|
104 |
+
|
105 |
+
def generate(self, caption, m_lens, dim_pose, batch_size=1024):
|
106 |
+
N = len(caption)
|
107 |
+
cur_idx = 0
|
108 |
+
self.encoder.eval()
|
109 |
+
all_output = []
|
110 |
+
while cur_idx < N:
|
111 |
+
if cur_idx + batch_size >= N:
|
112 |
+
batch_caption = caption[cur_idx:]
|
113 |
+
batch_m_lens = m_lens[cur_idx:]
|
114 |
+
else:
|
115 |
+
batch_caption = caption[cur_idx: cur_idx + batch_size]
|
116 |
+
batch_m_lens = m_lens[cur_idx: cur_idx + batch_size]
|
117 |
+
output = self.generate_batch(batch_caption, batch_m_lens, dim_pose)
|
118 |
+
B = output.shape[0]
|
119 |
+
|
120 |
+
for i in range(B):
|
121 |
+
all_output.append(output[i])
|
122 |
+
cur_idx += batch_size
|
123 |
+
return all_output
|
124 |
+
|
125 |
+
def backward_G(self):
|
126 |
+
loss_mot_rec = self.mse_criterion(self.fake_noise, self.real_noise).mean(dim=-1)
|
127 |
+
loss_mot_rec = (loss_mot_rec * self.src_mask).sum() / self.src_mask.sum()
|
128 |
+
self.loss_mot_rec = loss_mot_rec
|
129 |
+
loss_logs = OrderedDict({})
|
130 |
+
loss_logs['loss_mot_rec'] = self.loss_mot_rec.item()
|
131 |
+
return loss_logs
|
132 |
+
|
133 |
+
def update(self):
|
134 |
+
self.zero_grad([self.opt_encoder])
|
135 |
+
loss_logs = self.backward_G()
|
136 |
+
self.loss_mot_rec.backward()
|
137 |
+
self.clip_norm([self.encoder])
|
138 |
+
self.step([self.opt_encoder])
|
139 |
+
|
140 |
+
return loss_logs
|
141 |
+
|
142 |
+
def to(self, device):
|
143 |
+
if self.opt.is_train:
|
144 |
+
self.mse_criterion.to(device)
|
145 |
+
self.encoder = self.encoder.to(device)
|
146 |
+
|
147 |
+
def train_mode(self):
|
148 |
+
self.encoder.train()
|
149 |
+
|
150 |
+
def eval_mode(self):
|
151 |
+
self.encoder.eval()
|
152 |
+
|
153 |
+
def save(self, file_name, ep, total_it):
|
154 |
+
state = {
|
155 |
+
'opt_encoder': self.opt_encoder.state_dict(),
|
156 |
+
'ep': ep,
|
157 |
+
'total_it': total_it
|
158 |
+
}
|
159 |
+
try:
|
160 |
+
state['encoder'] = self.encoder.module.state_dict()
|
161 |
+
except:
|
162 |
+
state['encoder'] = self.encoder.state_dict()
|
163 |
+
torch.save(state, file_name)
|
164 |
+
return
|
165 |
+
|
166 |
+
def load(self, model_dir):
|
167 |
+
print(f'{self.__class__.__name__} loading model {model_dir}')
|
168 |
+
checkpoint = torch.load(model_dir, map_location=self.device)
|
169 |
+
if self.opt.is_train:
|
170 |
+
self.opt_encoder.load_state_dict(checkpoint['opt_encoder'])
|
171 |
+
self.encoder.load_state_dict(checkpoint['encoder'], strict=True)
|
172 |
+
return checkpoint['ep'], checkpoint.get('total_it', 0)
|
173 |
+
|
174 |
+
def train(self, train_dataset):
|
175 |
+
rank, world_size = get_dist_info()
|
176 |
+
self.to(self.device)
|
177 |
+
self.opt_encoder = optim.Adam(self.encoder.parameters(), lr=self.opt.lr)
|
178 |
+
it = 0
|
179 |
+
cur_epoch = 0
|
180 |
+
if self.opt.is_continue:
|
181 |
+
# model_dir = pjoin(self.opt.model_dir, 'latest.tar')
|
182 |
+
model_dir = pjoin(self.opt.model_dir, f'{self.opt.model_name}.tar')
|
183 |
+
cur_epoch, it = self.load(model_dir)
|
184 |
+
|
185 |
+
start_time = time.time()
|
186 |
+
|
187 |
+
train_loader = build_dataloader(
|
188 |
+
train_dataset,
|
189 |
+
samples_per_gpu=self.opt.batch_size,
|
190 |
+
drop_last=True,
|
191 |
+
workers_per_gpu=4,
|
192 |
+
shuffle=True,
|
193 |
+
dist=self.opt.distributed,
|
194 |
+
num_gpus=len(self.opt.gpu_id))
|
195 |
+
|
196 |
+
logs = OrderedDict()
|
197 |
+
for epoch in range(cur_epoch, self.opt.num_epochs):
|
198 |
+
print(f"epoch {epoch}, logging to wandb every {self.opt.log_every} iters")
|
199 |
+
self.train_mode()
|
200 |
+
# import pdb; pdb.set_trace()
|
201 |
+
for i, batch_data in enumerate(train_loader):
|
202 |
+
print(f"epoch {epoch}, batch {i}")
|
203 |
+
self.forward(batch_data)
|
204 |
+
log_dict = self.update()
|
205 |
+
for k, v in log_dict.items():
|
206 |
+
if k not in logs:
|
207 |
+
logs[k] = v
|
208 |
+
else:
|
209 |
+
logs[k] += v
|
210 |
+
it += 1
|
211 |
+
if it % self.opt.log_every == 0 and rank == 0:
|
212 |
+
mean_loss = OrderedDict({})
|
213 |
+
for tag, value in logs.items():
|
214 |
+
mean_loss[tag] = value / self.opt.log_every
|
215 |
+
logs = OrderedDict()
|
216 |
+
print_current_loss(start_time, it, mean_loss, epoch, inner_iter=i)
|
217 |
+
if self.opt.use_wandb:
|
218 |
+
print(f"logging loss w wandb {mean_loss['loss_mot_rec']:.4f}")
|
219 |
+
perf_dict = {
|
220 |
+
'loss_mot_rec': mean_loss['loss_mot_rec']
|
221 |
+
}
|
222 |
+
wandb.log(perf_dict)
|
223 |
+
# TODO (elmc): evaluate!
|
224 |
+
# if it % self.opt.eval_every_e == 0 and rank == 0:
|
225 |
+
# self.eval_mode()
|
226 |
+
# print(f"noise shape {self.real_noise.shape}")
|
227 |
+
# print(f"real noise: {self.real_noise}")
|
228 |
+
# print(f"fake noise: {self.fake_noise}")
|
229 |
+
# save real noise
|
230 |
+
# noise_path = f"{self.opt.noise_dir}/{epoch}_{i}.npy"
|
231 |
+
# np.save(noise_path, self.real_noise.cpu().numpy())
|
232 |
+
if it % self.opt.save_latest == 0 and rank == 0:
|
233 |
+
self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
|
234 |
+
|
235 |
+
if rank == 0:
|
236 |
+
self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
|
237 |
+
|
238 |
+
if epoch % self.opt.save_every_e == 0 and rank == 0:
|
239 |
+
self.save(pjoin(self.opt.model_dir, 'ckpt_e%03d.tar'%(epoch)),
|
240 |
+
epoch, total_it=it)
|