PUncert / app.py
elnasharomar2's picture
Update app.py
335b9ea verified
raw
history blame
1.95 kB
from transformers import pipeline
import gradio as gr
import os
from huggingface_hub import login
api_key = os.getenv("token")
login(token = api_key)
get_completion = pipeline("ner", model="elnasharomar2/PUNCERT_single_stages_50_epochs")
label_names = ["O","QE","EX","QM","DOT","COM","SEMICOL","COL"]
label_symbol = ["O",'ุŸ!','!','ุŸ','.','ุŒ','ุ›',':']
id2label = {i: label for i, label in zip(label_names,label_symbol)}
def merge_tokens(tokens):
merged_tokens = []
for token in tokens:
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
# If current token continues the entity of the last one, merge the two tokens
last_token = merged_tokens[-1]
last_token['word'] += token['word'].replace('##', '')
last_token['end'] = token['end']
last_token['score'] = (last_token['score'] + token['score']) / 2
else:
# Otherwise, add the token to the list
merged_tokens.append(token)
return merged_tokens
def ner(input):
output = get_completion(input)
merged_tokens = merge_tokens(output)
## modification
result =""
idx = 0
for i in output:
result += text[idx:i["start"]]
result += text[i["start"]:i["end"]] + f"{id2label[i["entity_group"]]}"
idx = i["end"]
result+=text[idx:]
print(result)
return {"text": result}
# return {"text": input, "entities": merged_tokens}
gr.close_all()
demo = gr.Interface(fn=ner,
inputs=[gr.Textbox(label="Text to find Punctuation", lines=2)],
outputs=[gr.HighlightedText(label="Text with Punct")],
title="Puncituation Predictor",
description="Find Puncituations using the `BERT-base` model under the hood!",
allow_flagging="never",
examples=[])
demo.launch()