ai-interface / app.py
eloi-goncalves's picture
Update app.py
4922309
raw
history blame
9.38 kB
from transformers import AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoTokenizer, PegasusForConditionalGeneration, PegasusTokenizer, pipeline
import gradio as grad
import ast
# mdl_name = "deepset/roberta-base-squad2"
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)
# model_translate_name = 'danhsf/m2m100_418M-finetuned-kde4-en-to-pt_BR'
# model_translate = AutoModelForSeq2SeqLM.from_pretrained(model_translate_name)
# model_translate_token = AutoTokenizer.from_pretrained(model_translate_name)
# translate_pipeline = pipeline('translation', model=model_translate_name)
def answer_question(question,context):
text= "{"+"'question': '"+question+"','context': '"+context+"'}"
di=ast.literal_eval(text)
response = my_pipeline(di)
print('response', response)
return response
#grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()
def translate(text):
inputs = model_translate_token(text, return_tensor='pt')
translate_output = model_translate.generate(**inputs)
response = model_translate_token(translate_output[0], skip_special_tokens=True)
#response = translate_pipeline(text)
return response
# grad.Interface(translate, inputs=['text',], outputs='text').launch()
# mdl_name = "google/pegasus-xsum"
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)
def summarize(text):
tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
txt_summary = mdl.generate(**tokens, num_return_sequences=5, max_length=200, temperature=1.5,num_beams=10)
response = pegasus_tkn.batch_decode(txt_summary, skip_special_tokens=True)
return response
# txt=grad.Textbox(lines=10, label="English", placeholder="English Text here")
# out=grad.Textbox(lines=10, label="Summary")
# grad.Interface(summarize, inputs=txt, outputs=out).launch()
# ZeroShotClassification using pipeline
# from transformers import pipeline
# import gradio as grad
# zero_shot_classifier = pipeline("zero-shot-classification")
def classify(text,labels):
classifer_labels = labels.split(",")
#["software", "politics", "love", "movies", "emergency", "advertisment","sports"]
response = zero_shot_classifier(text,classifer_labels)
return response
# txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified")
# labels=grad.Textbox(lines=1, label="Labels", placeholder="comma separated labels")
# out=grad.Textbox(lines=1, label="Classification")
# grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
# Text classification using BartForSequenceClassification
# from transformers import BartForSequenceClassification, BartTokenizer
# import gradio as grad
# bart_tkn = BartTokenizer.from_pretrained('facebook/bart-large-mnli')
# mdl = BartForSequenceClassification.from_pretrained('facebook/bart-large-mnli')
def classify(text,label):
tkn_ids = bart_tkn.encode(text, label, return_tensors='pt')
tkn_lgts = mdl(tkn_ids)[0]
entail_contra_tkn_lgts = tkn_lgts[:,[0,2]]
probab = entail_contra_tkn_lgts.softmax(dim=1)
response = probab[:,1].item() * 100
return response
# txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified")
# labels=grad.Textbox(lines=1, label="Label", placeholder="Input a Label")
# out=grad.Textbox(lines=1, label="Probablity of label being true is")
# grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
# GPT2
# from transformers import GPT2LMHeadModel,GPT2Tokenizer
# import gradio as grad
# mdl = GPT2LMHeadModel.from_pretrained('gpt2')
# gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')
def generate(starting_text):
tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
gpt2_tensors = mdl.generate(tkn_ids,max_length=100,no_repeat_ngram_size=True,num_beams=3,do_sample=True)
response=""
#response = gpt2_tensors
for i, x in enumerate(gpt2_tensors):
response=response+f"{i}: {gpt2_tkn.decode(x, skip_special_tokens=True)}"
return response
# txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
# out=grad.Textbox(lines=1, label="Generated Text")
# grad.Interface(generate, inputs=txt, outputs=out).launch()
#DistlGPT2
# from transformers import pipeline, set_seed
# import gradio as grad
# gpt2_pipe = pipeline('text-generation', model='distilgpt2')
# set_seed(42)
def generateDistlGPT2(starting_text):
response= gpt2_pipe(starting_text, max_length=20, num_return_sequences=5)
return response
# txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
# out=grad.Textbox(lines=1, label="Generated Text")
# grad.Interface(generateDistlGPT2, inputs=txt, outputs=out).launch()
#Text Generation
#Question Generation
# from transformers import AutoModelWithLMHead, AutoTokenizer
# import gradio as grad
# text2text_tkn = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
# mdl = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
def text2text(context,answer):
input_text = "answer: %s context: %s </s>" % (answer, context)
features = text2text_tkn ([input_text], return_tensors='pt')
output = mdl.generate(input_ids=features['input_ids'],
attention_mask=features['attention_mask'],
max_length=64)
response=text2text_tkn.decode(output[0])
return response
# context=grad.Textbox(lines=10, label="English", placeholder="Context")
# ans=grad.Textbox(lines=1, label="Answer")
# out=grad.Textbox(lines=1, label="Genereated Question")
# grad.Interface(text2text, inputs=[context,ans], outputs=out).launch()
#T5 summaryzer
# from transformers import AutoTokenizer, AutoModelWithLMHead
# import gradio as grad
# text2text_tkn = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small")
# mdl = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small")
def text2text_summary(para):
initial_txt = para.strip().replace("\n","")
tkn_text = text2text_tkn.encode(initial_txt, return_tensors="pt")
tkn_ids = mdl.generate(
tkn_text,
max_length=250,
num_beams=5,
repetition_penalty=2.5,
early_stopping=True
)
response = text2text_tkn.decode(tkn_ids[0], skip_special_tokens=True)
return response
# para=grad.Textbox(lines=10, label="Paragraph", placeholder="Copy paragraph")
# out=grad.Textbox(lines=1, label="Summary")
# grad.Interface(text2text_summary, inputs=para, outputs=out).launch()
# T5 Translate
# from transformers import T5ForConditionalGeneration, T5Tokenizer
# import gradio as grad
# text2text_tkn= T5Tokenizer.from_pretrained("t5-small")
# mdl = T5ForConditionalGeneration.from_pretrained("t5-small")
def text2text_translation(text):
inp = "translate English to Portuguese: "+text
enc = text2text_tkn(inp, return_tensors="pt", max_length=512, truncation=True)
tokens = mdl.generate(**enc, max_length=100, num_return_sequences=1, early_stopping=True)
response=text2text_tkn.decode(tokens[0], skip_special_tokens=True)
return response
# para=grad.Textbox(lines=1, label="English Text", placeholder="Text in English")
# out=grad.Textbox(lines=1, label="Portuguese Translation")
# grad.Interface(text2text_translation, inputs=para, outputs=out).launch()
# ChatBot
from transformers import AutoModelForCausalLM, AutoTokenizer,BlenderbotForConditionalGeneration
import torch
chat_tkn = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
mdl = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
#chat_tkn = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
#mdl = BlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
def converse(user_input, chat_history=[]):
user_input_ids = chat_tkn(user_input + chat_tkn.eos_token, return_tensors='pt').input_ids
# keep history in the tensor
bot_input_ids = torch.cat([torch.LongTensor(chat_history), user_input_ids], dim=-1)
# get response
chat_history = mdl.generate(bot_input_ids, max_length=1000, pad_token_id=chat_tkn.eos_token_id).tolist()
print (chat_history)
response = chat_tkn.decode(chat_history[0]).split("<|endoftext|>")
print("starting to print response")
print(response)
# html for display
html = "<div class='mychat'>"
for x, mesg in enumerate(response):
if x%2!=0 :
mesg="Alicia:"+mesg
clazz="alicia"
else :
clazz="user"
print("value of x")
print(x)
print("message")
print (mesg)
html += "<div class='mesg {}'> {}</div>".format(clazz, mesg)
html += "</div>"
print(html)
return html, chat_history
import gradio as grad
css = """
.mychat {display:flex;flex-direction:column}
.mesg {padding:5px;margin-bottom:5px;border-radius:5px;width:75%}
.mesg.user {background-color:lightblue;color:white}
.mesg.alicia {background-color:orange;color:white,align-self:self-end}
.footer {display:none !important}
"""
text=grad.inputs.Textbox(placeholder="Lets chat")
grad.Interface(fn=converse,
theme="default",
inputs=[text, "state"],
outputs=["html", "state"],
css=css).launch()