Spaces:
Sleeping
Sleeping
from transformers import AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoTokenizer, PegasusForConditionalGeneration, PegasusTokenizer, pipeline | |
import gradio as grad | |
import ast | |
# mdl_name = "deepset/roberta-base-squad2" | |
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name) | |
# model_translate_name = 'danhsf/m2m100_418M-finetuned-kde4-en-to-pt_BR' | |
# model_translate = AutoModelForSeq2SeqLM.from_pretrained(model_translate_name) | |
# model_translate_token = AutoTokenizer.from_pretrained(model_translate_name) | |
# translate_pipeline = pipeline('translation', model=model_translate_name) | |
def answer_question(question,context): | |
text= "{"+"'question': '"+question+"','context': '"+context+"'}" | |
di=ast.literal_eval(text) | |
response = my_pipeline(di) | |
print('response', response) | |
return response | |
#grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch() | |
def translate(text): | |
inputs = model_translate_token(text, return_tensor='pt') | |
translate_output = model_translate.generate(**inputs) | |
response = model_translate_token(translate_output[0], skip_special_tokens=True) | |
#response = translate_pipeline(text) | |
return response | |
# grad.Interface(translate, inputs=['text',], outputs='text').launch() | |
# mdl_name = "google/pegasus-xsum" | |
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name) | |
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name) | |
def summarize(text): | |
tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt") | |
txt_summary = mdl.generate(**tokens, num_return_sequences=5, max_length=200, temperature=1.5,num_beams=10) | |
response = pegasus_tkn.batch_decode(txt_summary, skip_special_tokens=True) | |
return response | |
# txt=grad.Textbox(lines=10, label="English", placeholder="English Text here") | |
# out=grad.Textbox(lines=10, label="Summary") | |
# grad.Interface(summarize, inputs=txt, outputs=out).launch() | |
# ZeroShotClassification using pipeline | |
# from transformers import pipeline | |
# import gradio as grad | |
# zero_shot_classifier = pipeline("zero-shot-classification") | |
def classify(text,labels): | |
classifer_labels = labels.split(",") | |
#["software", "politics", "love", "movies", "emergency", "advertisment","sports"] | |
response = zero_shot_classifier(text,classifer_labels) | |
return response | |
# txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified") | |
# labels=grad.Textbox(lines=1, label="Labels", placeholder="comma separated labels") | |
# out=grad.Textbox(lines=1, label="Classification") | |
# grad.Interface(classify, inputs=[txt,labels], outputs=out).launch() | |
# Text classification using BartForSequenceClassification | |
# from transformers import BartForSequenceClassification, BartTokenizer | |
# import gradio as grad | |
# bart_tkn = BartTokenizer.from_pretrained('facebook/bart-large-mnli') | |
# mdl = BartForSequenceClassification.from_pretrained('facebook/bart-large-mnli') | |
def classify(text,label): | |
tkn_ids = bart_tkn.encode(text, label, return_tensors='pt') | |
tkn_lgts = mdl(tkn_ids)[0] | |
entail_contra_tkn_lgts = tkn_lgts[:,[0,2]] | |
probab = entail_contra_tkn_lgts.softmax(dim=1) | |
response = probab[:,1].item() * 100 | |
return response | |
# txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified") | |
# labels=grad.Textbox(lines=1, label="Label", placeholder="Input a Label") | |
# out=grad.Textbox(lines=1, label="Probablity of label being true is") | |
# grad.Interface(classify, inputs=[txt,labels], outputs=out).launch() | |
# GPT2 | |
from transformers import GPT2LMHeadModel,GPT2Tokenizer | |
import gradio as grad | |
mdl = GPT2LMHeadModel.from_pretrained('gpt2') | |
gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2') | |
def generate(starting_text): | |
tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt') | |
gpt2_tensors = mdl.generate(tkn_ids,max_length=100,no_repeat_ngram_size=True,num_beams=3,do_sample=True,temperatue=0.1) | |
# response = gpt2_tensors | |
response="" | |
for i, x in enumerate(gpt2_tensors): | |
response=response+f"{i}: {gpt2_tkn.decode(x, skip_special_tokens=True)}" | |
return response | |
txt=grad.Textbox(lines=1, label="English", placeholder="English Text here") | |
out=grad.Textbox(lines=1, label="Generated Tensors") | |
grad.Interface(generate, inputs=txt, outputs=out).launch() | |