eloi-goncalves commited on
Commit
15b206d
·
1 Parent(s): 1afaaf2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -7
app.py CHANGED
@@ -122,10 +122,10 @@ def text2text(context,answer):
122
  # grad.Interface(text2text, inputs=[context,ans], outputs=out).launch()
123
 
124
  #T5 summaryzer
125
- from transformers import AutoTokenizer, AutoModelWithLMHead
126
- import gradio as grad
127
- text2text_tkn = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small")
128
- mdl = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small")
129
  def text2text_summary(para):
130
  initial_txt = para.strip().replace("\n","")
131
  tkn_text = text2text_tkn.encode(initial_txt, return_tensors="pt")
@@ -138,6 +138,21 @@ def text2text_summary(para):
138
  )
139
  response = text2text_tkn.decode(tkn_ids[0], skip_special_tokens=True)
140
  return response
141
- para=grad.Textbox(lines=10, label="Paragraph", placeholder="Copy paragraph")
142
- out=grad.Textbox(lines=1, label="Summary")
143
- grad.Interface(text2text_summary, inputs=para, outputs=out).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
  # grad.Interface(text2text, inputs=[context,ans], outputs=out).launch()
123
 
124
  #T5 summaryzer
125
+ # from transformers import AutoTokenizer, AutoModelWithLMHead
126
+ # import gradio as grad
127
+ # text2text_tkn = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small")
128
+ # mdl = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small")
129
  def text2text_summary(para):
130
  initial_txt = para.strip().replace("\n","")
131
  tkn_text = text2text_tkn.encode(initial_txt, return_tensors="pt")
 
138
  )
139
  response = text2text_tkn.decode(tkn_ids[0], skip_special_tokens=True)
140
  return response
141
+ # para=grad.Textbox(lines=10, label="Paragraph", placeholder="Copy paragraph")
142
+ # out=grad.Textbox(lines=1, label="Summary")
143
+ # grad.Interface(text2text_summary, inputs=para, outputs=out).launch()
144
+
145
+ # T5 Translate
146
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
147
+ import gradio as grad
148
+ text2text_tkn= T5Tokenizer.from_pretrained("t5-small")
149
+ mdl = T5ForConditionalGeneration.from_pretrained("t5-small")
150
+ def text2text_translation(text):
151
+ inp = "translate English to Portuguese:: "+text
152
+ enc = text2text_tkn(inp, return_tensors="pt")
153
+ tokens = mdl.generate(**enc)
154
+ response=text2text_tkn.batch_decode(tokens)
155
+ return response
156
+ para=grad.Textbox(lines=1, label="English Text", placeholder="Text in English")
157
+ out=grad.Textbox(lines=1, label="Portuguese Translation")
158
+ grad.Interface(text2text_translation, inputs=para, outputs=out).launch()