Spaces:
Sleeping
Sleeping
Commit
·
21d73b8
1
Parent(s):
03113eb
Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,13 @@ from transformers import AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, A
|
|
2 |
import gradio as grad
|
3 |
import ast
|
4 |
|
5 |
-
mdl_name = "deepset/roberta-base-squad2"
|
6 |
-
my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)
|
7 |
|
8 |
-
model_translate_name = 'danhsf/m2m100_418M-finetuned-kde4-en-to-pt_BR'
|
9 |
-
model_translate = AutoModelForSeq2SeqLM.from_pretrained(model_translate_name)
|
10 |
-
model_translate_token = AutoTokenizer.from_pretrained(model_translate_name)
|
11 |
-
translate_pipeline = pipeline('translation', model=model_translate_name)
|
12 |
|
13 |
def answer_question(question,context):
|
14 |
text= "{"+"'question': '"+question+"','context': '"+context+"'}"
|
@@ -16,6 +16,7 @@ def answer_question(question,context):
|
|
16 |
response = my_pipeline(di)
|
17 |
print('response', response)
|
18 |
return response
|
|
|
19 |
|
20 |
|
21 |
def translate(text):
|
@@ -24,21 +25,34 @@ def translate(text):
|
|
24 |
response = model_translate_token(translate_output[0], skip_special_tokens=True)
|
25 |
#response = translate_pipeline(text)
|
26 |
return response
|
|
|
27 |
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)
|
33 |
|
34 |
def summarize(text):
|
35 |
tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
|
36 |
txt_summary = mdl.generate(**tokens, num_return_sequences=5, max_length=200, temperature=1.5,num_beams=10)
|
37 |
response = pegasus_tkn.batch_decode(txt_summary, skip_special_tokens=True)
|
38 |
return response
|
39 |
-
|
40 |
-
|
41 |
-
grad.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
#grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()
|
44 |
-
# grad.Interface(translate, inputs=['text',], outputs='text').launch()
|
|
|
2 |
import gradio as grad
|
3 |
import ast
|
4 |
|
5 |
+
# mdl_name = "deepset/roberta-base-squad2"
|
6 |
+
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)
|
7 |
|
8 |
+
# model_translate_name = 'danhsf/m2m100_418M-finetuned-kde4-en-to-pt_BR'
|
9 |
+
# model_translate = AutoModelForSeq2SeqLM.from_pretrained(model_translate_name)
|
10 |
+
# model_translate_token = AutoTokenizer.from_pretrained(model_translate_name)
|
11 |
+
# translate_pipeline = pipeline('translation', model=model_translate_name)
|
12 |
|
13 |
def answer_question(question,context):
|
14 |
text= "{"+"'question': '"+question+"','context': '"+context+"'}"
|
|
|
16 |
response = my_pipeline(di)
|
17 |
print('response', response)
|
18 |
return response
|
19 |
+
#grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()
|
20 |
|
21 |
|
22 |
def translate(text):
|
|
|
25 |
response = model_translate_token(translate_output[0], skip_special_tokens=True)
|
26 |
#response = translate_pipeline(text)
|
27 |
return response
|
28 |
+
# grad.Interface(translate, inputs=['text',], outputs='text').launch()
|
29 |
|
30 |
|
31 |
+
# mdl_name = "google/pegasus-xsum"
|
32 |
+
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
|
33 |
+
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)
|
|
|
34 |
|
35 |
def summarize(text):
|
36 |
tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
|
37 |
txt_summary = mdl.generate(**tokens, num_return_sequences=5, max_length=200, temperature=1.5,num_beams=10)
|
38 |
response = pegasus_tkn.batch_decode(txt_summary, skip_special_tokens=True)
|
39 |
return response
|
40 |
+
|
41 |
+
# txt=grad.Textbox(lines=10, label="English", placeholder="English Text here")
|
42 |
+
# out=grad.Textbox(lines=10, label="Summary")
|
43 |
+
# grad.Interface(summarize, inputs=txt, outputs=out).launch()
|
44 |
+
|
45 |
+
|
46 |
+
from transformers import pipeline
|
47 |
+
import gradio as grad
|
48 |
+
zero_shot_classifier = pipeline("zero-shot-classification")
|
49 |
+
def classify(text,labels):
|
50 |
+
classifer_labels = labels.split(",")
|
51 |
+
#["software", "politics", "love", "movies", "emergency", "advertisment","sports"]
|
52 |
+
response = zero_shot_classifier(text,classifer_labels)
|
53 |
+
return response
|
54 |
+
txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified")
|
55 |
+
labels=grad.Textbox(lines=1, label="Labels", placeholder="comma separated labels")
|
56 |
+
out=grad.Textbox(lines=1, label="Classification")
|
57 |
+
grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
|
58 |
|
|
|
|