Spaces:
Sleeping
Sleeping
Commit
·
92e2176
1
Parent(s):
8c6b14f
Update app.py
Browse files
app.py
CHANGED
@@ -74,10 +74,10 @@ def classify(text,label):
|
|
74 |
# grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
|
75 |
|
76 |
# GPT2
|
77 |
-
from transformers import GPT2LMHeadModel,GPT2Tokenizer
|
78 |
-
import gradio as grad
|
79 |
-
mdl = GPT2LMHeadModel.from_pretrained('gpt2')
|
80 |
-
gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')
|
81 |
def generate(starting_text):
|
82 |
tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
|
83 |
gpt2_tensors = mdl.generate(tkn_ids,max_length=100,no_repeat_ngram_size=True,num_beams=3,do_sample=True)
|
@@ -86,6 +86,18 @@ def generate(starting_text):
|
|
86 |
for i, x in enumerate(gpt2_tensors):
|
87 |
response=response+f"{i}: {gpt2_tkn.decode(x, skip_special_tokens=True)}"
|
88 |
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
|
90 |
out=grad.Textbox(lines=1, label="Generated Text")
|
91 |
-
grad.Interface(
|
|
|
74 |
# grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
|
75 |
|
76 |
# GPT2
|
77 |
+
# from transformers import GPT2LMHeadModel,GPT2Tokenizer
|
78 |
+
# import gradio as grad
|
79 |
+
# mdl = GPT2LMHeadModel.from_pretrained('gpt2')
|
80 |
+
# gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')
|
81 |
def generate(starting_text):
|
82 |
tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
|
83 |
gpt2_tensors = mdl.generate(tkn_ids,max_length=100,no_repeat_ngram_size=True,num_beams=3,do_sample=True)
|
|
|
86 |
for i, x in enumerate(gpt2_tensors):
|
87 |
response=response+f"{i}: {gpt2_tkn.decode(x, skip_special_tokens=True)}"
|
88 |
return response
|
89 |
+
# txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
|
90 |
+
# out=grad.Textbox(lines=1, label="Generated Text")
|
91 |
+
# grad.Interface(generate, inputs=txt, outputs=out).launch()
|
92 |
+
|
93 |
+
#DistlGPT2
|
94 |
+
from transformers import pipeline, set_seed
|
95 |
+
import gradio as grad
|
96 |
+
gpt2_pipe = pipeline('text-generation', model='distilgpt2')
|
97 |
+
set_seed(42)
|
98 |
+
def generateDistlGPT2(starting_text):
|
99 |
+
response= gpt2_pipe(starting_text, max_length=20, num_return_sequences=5)
|
100 |
+
return response
|
101 |
txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
|
102 |
out=grad.Textbox(lines=1, label="Generated Text")
|
103 |
+
grad.Interface(generateDistlGPT2, inputs=txt, outputs=out).launch()
|