from transformers import AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoTokenizer, PegasusForConditionalGeneration, PegasusTokenizer, pipeline import gradio as grad import ast # mdl_name = "deepset/roberta-base-squad2" # my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name) # model_translate_name = 'danhsf/m2m100_418M-finetuned-kde4-en-to-pt_BR' # model_translate = AutoModelForSeq2SeqLM.from_pretrained(model_translate_name) # model_translate_token = AutoTokenizer.from_pretrained(model_translate_name) # translate_pipeline = pipeline('translation', model=model_translate_name) def answer_question(question,context): text= "{"+"'question': '"+question+"','context': '"+context+"'}" di=ast.literal_eval(text) response = my_pipeline(di) print('response', response) return response #grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch() def translate(text): inputs = model_translate_token(text, return_tensor='pt') translate_output = model_translate.generate(**inputs) response = model_translate_token(translate_output[0], skip_special_tokens=True) #response = translate_pipeline(text) return response # grad.Interface(translate, inputs=['text',], outputs='text').launch() # mdl_name = "google/pegasus-xsum" # pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name) # mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name) def summarize(text): tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt") txt_summary = mdl.generate(**tokens, num_return_sequences=5, max_length=200, temperature=1.5,num_beams=10) response = pegasus_tkn.batch_decode(txt_summary, skip_special_tokens=True) return response # txt=grad.Textbox(lines=10, label="English", placeholder="English Text here") # out=grad.Textbox(lines=10, label="Summary") # grad.Interface(summarize, inputs=txt, outputs=out).launch() from transformers import pipeline import gradio as grad zero_shot_classifier = pipeline("zero-shot-classification") def classify(text,labels): classifer_labels = labels.split(",") #["software", "politics", "love", "movies", "emergency", "advertisment","sports"] response = zero_shot_classifier(text,classifer_labels) return response txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified") labels=grad.Textbox(lines=1, label="Labels", placeholder="comma separated labels") out=grad.Textbox(lines=1, label="Classification") grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()