File size: 5,435 Bytes
0516cf4
 
 
 
9406910
 
0516cf4
 
 
 
 
 
9406910
0516cf4
 
 
9406910
0516cf4
 
 
 
 
9406910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0516cf4
 
 
 
 
9406910
 
752e521
9406910
 
 
0516cf4
 
9406910
 
 
 
 
 
0516cf4
9406910
0516cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9406910
 
 
 
 
 
 
 
0516cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2879460
0516cf4
 
 
 
 
2879460
0516cf4
2879460
0516cf4
 
 
 
 
 
 
 
 
9406910
0516cf4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from diffusers import EulerAncestralDiscreteScheduler
from compel import Compel, ReturnedEmbeddingsType
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained("John6666/mala-anime-mix-nsfw-pony-xl-v6-sdxl", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    pipe.enable_xformers_memory_efficient_attention()
    pipe = pipe.to(device)
else: 
    pipe = DiffusionPipeline.from_pretrained("John6666/mala-anime-mix-nsfw-pony-xl-v6-sdxl", use_safetensors=True)
    pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024



pipe.safety_checker = None
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

compel = Compel(
  tokenizer=[pipe.tokenizer, pipe.tokenizer_2] ,
  text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
  returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
  requires_pooled=[False, True]
)

pipe.load_lora_weights("xenov2/pony", weight_name="style_cogecha_pony_1.safetensors", adapter_name="chochega")

def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_weight):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)

    conditioning, pooled = compel(prompt)
    negative_conditioning, negative_pooled = compel(negative_prompt)

    [conditioning, negative_conditioning] = compel.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning])

    
    image = pipe(
        # prompt = prompt, 
        # negative_prompt = negative_prompt,
        prompt_embeds=conditioning,
        pooled_prompt_embeds=pooled,
        negative_propmt_embeds=negative_conditioning,
        negative_pooled_prompt_embeds=negative_pooled,
        guidance_scale = guidance_scale, 
        cross_attention_kwargs={"scale": lora_weight},
        num_inference_steps = num_inference_steps, 
        width = width, 
        height = height,
        generator = generator
    ).images[0] 
    
    return image

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Gradio Template
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            lora_weight = gr.Slider(
                label="Lora weight",
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.0,
            )
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.0,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=80,
                    step=1,
                    value=20,
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )

    run_button.click(
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_weight],
        outputs = [result]
    )

demo.queue().launch()