elucidator8918 commited on
Commit
13fd1be
·
verified ·
1 Parent(s): c2d7e1a

Update tasks/text.py

Browse files
Files changed (1) hide show
  1. tasks/text.py +28 -8
tasks/text.py CHANGED
@@ -1,10 +1,12 @@
 
 
1
  from fastapi import APIRouter
2
  from datetime import datetime
3
  from datasets import load_dataset
4
  from sklearn.metrics import accuracy_score
5
- import random
6
- from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer
7
- import torch
8
 
9
  from .utils.evaluation import TextEvaluationRequest
10
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
@@ -14,6 +16,23 @@ router = APIRouter()
14
  DESCRIPTION = "GTE Architecture"
15
  ROUTE = "/text"
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  @router.post(ROUTE, tags=["Text Task"],
18
  description=DESCRIPTION)
19
  async def evaluate_text(request: TextEvaluationRequest):
@@ -49,13 +68,14 @@ async def evaluate_text(request: TextEvaluationRequest):
49
 
50
  true_labels = test_dataset["label"]
51
  texts = test_dataset["quote"]
52
-
 
 
53
  model_repo = "elucidator8918/frugal-ai-text"
54
- config = AutoConfig.from_pretrained(model_repo)
55
- model = AutoModelForSequenceClassification.from_pretrained(model_repo)
56
  tokenizer = AutoTokenizer.from_pretrained(model_repo)
57
-
58
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
59
  model = model.to(device)
60
  model.eval()
61
 
 
1
+ import torch
2
+ import random
3
  from fastapi import APIRouter
4
  from datetime import datetime
5
  from datasets import load_dataset
6
  from sklearn.metrics import accuracy_score
7
+ from transformers import AutoTokenizer, AutoModel, AutoConfig
8
+ from huggingface_hub import hf_hub_download
9
+ from safetensors.torch import load_file
10
 
11
  from .utils.evaluation import TextEvaluationRequest
12
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
 
16
  DESCRIPTION = "GTE Architecture"
17
  ROUTE = "/text"
18
 
19
+ class AutoBertClassifier(nn.Module):
20
+ def __init__(self, num_labels=8, model_path="Alibaba-NLP/gte-modernbert-base"):
21
+ super().__init__()
22
+ self.tokenizer = AutoTokenizer.from_pretrained(model_path)
23
+ self.bert = AutoModel.from_pretrained(model_path)
24
+ self.config = AutoConfig.from_pretrained(model_path)
25
+ self.config.num_labels = num_labels
26
+ self.dropout = nn.Dropout(0.05)
27
+ self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
28
+
29
+ def forward(self, input_ids, attention_mask):
30
+ outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
31
+ pooled_output = outputs.last_hidden_state[:, 0] # Using [CLS] token representation
32
+ pooled_output = self.dropout(pooled_output)
33
+ logits = self.classifier(pooled_output)
34
+ return logits
35
+
36
  @router.post(ROUTE, tags=["Text Task"],
37
  description=DESCRIPTION)
38
  async def evaluate_text(request: TextEvaluationRequest):
 
68
 
69
  true_labels = test_dataset["label"]
70
  texts = test_dataset["quote"]
71
+
72
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
73
+
74
  model_repo = "elucidator8918/frugal-ai-text"
75
+ model = AutoBertClassifier(num_labels=8)
76
+ model.load_state_dict(load_file(hf_hub_download(repo_id=model_repo, filename="model.safetensors")))
77
  tokenizer = AutoTokenizer.from_pretrained(model_repo)
78
+
 
79
  model = model.to(device)
80
  model.eval()
81