File size: 6,280 Bytes
0b92dde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6da2637
0b92dde
3815ef9
6da2637
 
 
 
 
0b92dde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Global variable to store history of attempts
history = []

def predict_house_price(area):
    """Simple house price prediction based on area"""
    # Using the simple formula: price = 0.1 * area (as per your slides)
    price = 0.1 * area
    return float(price)

def calculate_sse(x, y, m, b):
    """Calculate Sum of Squared Errors"""
    y_predicted = m * x + b
    sse = np.sum((y - y_predicted) ** 2)
    return sse

def plot_regression(data, m, b):
    try:
        df = data if isinstance(data, pd.DataFrame) else pd.read_csv(data)
        df['X'] = pd.to_numeric(df['X'])
        df['Y'] = pd.to_numeric(df['Y'])
        
        sse = calculate_sse(df['X'], df['Y'], m, b)
        
        history.append({
            'm': m,
            'b': b,
            'sse': sse,
            'color': plt.cm.rainbow(len(history) % 10 / 10)
        })
        
        fig = plt.figure(figsize=(15, 6))
        
        # First subplot - Regression lines
        ax1 = fig.add_subplot(121)
        ax1.scatter(df['X'], df['Y'], color='black', alpha=0.5, label='Data points')
        
        for i, attempt in enumerate(history):
            x_range = np.linspace(df['X'].min(), df['X'].max(), 100)
            y_line = attempt['m'] * x_range + attempt['b']
            label = f"m={attempt['m']:.1f}, b={attempt['b']:.1f}"
            ax1.plot(x_range, y_line, color=attempt['color'], linewidth=2, 
                    label=f"Try {i+1}: {label}")
        
        ax1.set_xlabel('X')
        ax1.set_ylabel('Y')
        ax1.set_title('Linear Regression Attempts')
        ax1.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
        
        # Second subplot - SSE values
        ax2 = fig.add_subplot(122)
        attempts = range(1, len(history) + 1)
        sse_values = [attempt['sse'] for attempt in history]
        colors = [attempt['color'] for attempt in history]
        
        ax2.scatter(attempts, sse_values, c=colors)
        ax2.plot(attempts, sse_values, 'gray', alpha=0.3)
        
        for i, (attempt, sse) in enumerate(zip(attempts, sse_values)):
            label = f"m={history[i]['m']:.1f}\nb={history[i]['b']:.1f}"
            ax2.annotate(label, (attempt, sse), 
                        xytext=(5, 5), textcoords='offset points')
        
        ax2.set_xlabel('Attempt Number')
        ax2.set_ylabel('Sum of Squared Errors')
        ax2.set_title('SSE for Each Attempt')
        ax2.grid(True, alpha=0.3)
        
        plt.tight_layout()
        plt.close()
        return fig
        
    except Exception as e:
        print(f"Error: {e}")
        return None

def clear_history():
    history.clear()
    return None

# Create the Gradio interface with tabs
with gr.Blocks() as app:
    gr.Markdown("# Linear Regression Learning Tools")
    
    with gr.Tabs():
        # First Tab - House Price Prediction
        with gr.TabItem("House Price Predictor"):
            gr.Markdown("""
            # House Price Predictor
            Enter the area of the house (in m²) to predict its price.
            Based on the simple model: Price = 0.1 × Area
            """)
            
            with gr.Row():
                area_input = gr.Number(
                    label="House Area (m²)",
                    value=100
                )
                price_output = gr.Number(
                    label="Predicted Price ($M)",
                    value=None
                )
            
            predict_button = gr.Button("Predict Price")
            predict_button.click(
                fn=predict_house_price,
                inputs=area_input,
                outputs=price_output
            )
            
            # Example table
            gr.Markdown("""
            ### Example Data Points:
            | Area (m²) | Price ($M) |
            |-----------|------------|
            | 100       | 10         |
            | 200       | 20         |
            | 300       | 30         |
            | 400       | 40         |
            | 500       | 50         |
            """)

        # Second Tab - Regression Playground
        with gr.TabItem("Understanding Squares Error"):
            gr.Markdown("""
            # Understanding Squares Error
            See how different lines affect the total squared error:
            - The data shows the relationship between house area and price
            - Try different slopes (m) and y-intercepts (b) for the line
            - Watch how the squared errors (orange boxes) change
            - Lower total squared error means a better fitting line
            """)
            
            with gr.Row():
                data_input = gr.Dataframe(
                    headers=["X", "Y"],
                    datatype=["number", "number"],
                    row_count=5,
                    col_count=2,
                    label="Dataset",
                    interactive=True,
                    value=[[100, 10],
                          [200, 20],
                          [300, 30],
                          [400, 40],
                          [500, 50]]
                )
                
                with gr.Column():
                    m_slider = gr.Slider(
                        minimum=-10,
                        maximum=10,
                        value=1.0,
                        step=0.1,
                        label="Slope (m)",
                    )

                    b_slider = gr.Slider(
                        minimum=-10,
                        maximum=10,
                        value=0.0,
                        step=0.1,
                        label="Intercept (b)",
                    )
                    
                    submit_button = gr.Button("Submit")
                    clear_button = gr.Button("Clear History")
            
            plot_output = gr.Plot()
            
            # Set up the event handlers
            inputs = [data_input, m_slider, b_slider]
            clear_button.click(fn=clear_history, inputs=None, outputs=plot_output)
            submit_button.click(fn=plot_regression, inputs=inputs, outputs=plot_output)

if __name__ == "__main__":
    app.launch(show_api=False)