Spaces:
Sleeping
Sleeping
File size: 6,280 Bytes
0b92dde 6da2637 0b92dde 3815ef9 6da2637 0b92dde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Global variable to store history of attempts
history = []
def predict_house_price(area):
"""Simple house price prediction based on area"""
# Using the simple formula: price = 0.1 * area (as per your slides)
price = 0.1 * area
return float(price)
def calculate_sse(x, y, m, b):
"""Calculate Sum of Squared Errors"""
y_predicted = m * x + b
sse = np.sum((y - y_predicted) ** 2)
return sse
def plot_regression(data, m, b):
try:
df = data if isinstance(data, pd.DataFrame) else pd.read_csv(data)
df['X'] = pd.to_numeric(df['X'])
df['Y'] = pd.to_numeric(df['Y'])
sse = calculate_sse(df['X'], df['Y'], m, b)
history.append({
'm': m,
'b': b,
'sse': sse,
'color': plt.cm.rainbow(len(history) % 10 / 10)
})
fig = plt.figure(figsize=(15, 6))
# First subplot - Regression lines
ax1 = fig.add_subplot(121)
ax1.scatter(df['X'], df['Y'], color='black', alpha=0.5, label='Data points')
for i, attempt in enumerate(history):
x_range = np.linspace(df['X'].min(), df['X'].max(), 100)
y_line = attempt['m'] * x_range + attempt['b']
label = f"m={attempt['m']:.1f}, b={attempt['b']:.1f}"
ax1.plot(x_range, y_line, color=attempt['color'], linewidth=2,
label=f"Try {i+1}: {label}")
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
ax1.set_title('Linear Regression Attempts')
ax1.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
# Second subplot - SSE values
ax2 = fig.add_subplot(122)
attempts = range(1, len(history) + 1)
sse_values = [attempt['sse'] for attempt in history]
colors = [attempt['color'] for attempt in history]
ax2.scatter(attempts, sse_values, c=colors)
ax2.plot(attempts, sse_values, 'gray', alpha=0.3)
for i, (attempt, sse) in enumerate(zip(attempts, sse_values)):
label = f"m={history[i]['m']:.1f}\nb={history[i]['b']:.1f}"
ax2.annotate(label, (attempt, sse),
xytext=(5, 5), textcoords='offset points')
ax2.set_xlabel('Attempt Number')
ax2.set_ylabel('Sum of Squared Errors')
ax2.set_title('SSE for Each Attempt')
ax2.grid(True, alpha=0.3)
plt.tight_layout()
plt.close()
return fig
except Exception as e:
print(f"Error: {e}")
return None
def clear_history():
history.clear()
return None
# Create the Gradio interface with tabs
with gr.Blocks() as app:
gr.Markdown("# Linear Regression Learning Tools")
with gr.Tabs():
# First Tab - House Price Prediction
with gr.TabItem("House Price Predictor"):
gr.Markdown("""
# House Price Predictor
Enter the area of the house (in m²) to predict its price.
Based on the simple model: Price = 0.1 × Area
""")
with gr.Row():
area_input = gr.Number(
label="House Area (m²)",
value=100
)
price_output = gr.Number(
label="Predicted Price ($M)",
value=None
)
predict_button = gr.Button("Predict Price")
predict_button.click(
fn=predict_house_price,
inputs=area_input,
outputs=price_output
)
# Example table
gr.Markdown("""
### Example Data Points:
| Area (m²) | Price ($M) |
|-----------|------------|
| 100 | 10 |
| 200 | 20 |
| 300 | 30 |
| 400 | 40 |
| 500 | 50 |
""")
# Second Tab - Regression Playground
with gr.TabItem("Understanding Squares Error"):
gr.Markdown("""
# Understanding Squares Error
See how different lines affect the total squared error:
- The data shows the relationship between house area and price
- Try different slopes (m) and y-intercepts (b) for the line
- Watch how the squared errors (orange boxes) change
- Lower total squared error means a better fitting line
""")
with gr.Row():
data_input = gr.Dataframe(
headers=["X", "Y"],
datatype=["number", "number"],
row_count=5,
col_count=2,
label="Dataset",
interactive=True,
value=[[100, 10],
[200, 20],
[300, 30],
[400, 40],
[500, 50]]
)
with gr.Column():
m_slider = gr.Slider(
minimum=-10,
maximum=10,
value=1.0,
step=0.1,
label="Slope (m)",
)
b_slider = gr.Slider(
minimum=-10,
maximum=10,
value=0.0,
step=0.1,
label="Intercept (b)",
)
submit_button = gr.Button("Submit")
clear_button = gr.Button("Clear History")
plot_output = gr.Plot()
# Set up the event handlers
inputs = [data_input, m_slider, b_slider]
clear_button.click(fn=clear_history, inputs=None, outputs=plot_output)
submit_button.click(fn=plot_regression, inputs=inputs, outputs=plot_output)
if __name__ == "__main__":
app.launch(show_api=False) |