Spaces:
Running
on
Zero
Running
on
Zero
base64 encoding (#1)
Browse files- read from base64 (3c18f7a0804a94b8cdd4b7b8b67378fd38716933)
Co-authored-by: EduardoM Magdaleno <[email protected]>
app.py
CHANGED
@@ -24,7 +24,8 @@ import gradio as gr
|
|
24 |
from gradio_imageslider import ImageSlider
|
25 |
|
26 |
from huggingface_hub import hf_hub_download
|
27 |
-
|
|
|
28 |
USE_TORCH_COMPILE = False
|
29 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
30 |
|
@@ -161,17 +162,16 @@ def prepare_image(input_image, resolution, hdr):
|
|
161 |
|
162 |
@spaces.GPU
|
163 |
@timer_func
|
164 |
-
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
165 |
print("Starting image processing...")
|
166 |
torch.cuda.empty_cache()
|
|
|
|
|
167 |
|
168 |
condition_image = prepare_image(input_image, resolution, hdr)
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
prompt = ""
|
174 |
-
negative_prompt = ""
|
175 |
|
176 |
options = {
|
177 |
"prompt": prompt,
|
@@ -209,6 +209,8 @@ with gr.Blocks() as demo:
|
|
209 |
with gr.Row():
|
210 |
with gr.Column():
|
211 |
input_image = gr.Image(type="pil", label="Input Image")
|
|
|
|
|
212 |
run_button = gr.Button("Enhance Image")
|
213 |
with gr.Column():
|
214 |
output_slider = ImageSlider(label="Before / After", type="numpy")
|
@@ -220,7 +222,7 @@ with gr.Blocks() as demo:
|
|
220 |
guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")
|
221 |
|
222 |
run_button.click(fn=gradio_process_image,
|
223 |
-
inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
|
224 |
outputs=output_slider)
|
225 |
|
226 |
# # Add examples with all required inputs
|
|
|
24 |
from gradio_imageslider import ImageSlider
|
25 |
|
26 |
from huggingface_hub import hf_hub_download
|
27 |
+
import base64
|
28 |
+
from io import BytesIO
|
29 |
USE_TORCH_COMPILE = False
|
30 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
31 |
|
|
|
162 |
|
163 |
@spaces.GPU
|
164 |
@timer_func
|
165 |
+
def gradio_process_image(input_image, input_base64, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
166 |
print("Starting image processing...")
|
167 |
torch.cuda.empty_cache()
|
168 |
+
if input_base64 and len(input_base64) > 0:
|
169 |
+
input_image = Image.open(BytesIO(base64.b64decode(input_base64)))
|
170 |
|
171 |
condition_image = prepare_image(input_image, resolution, hdr)
|
172 |
|
173 |
+
prompt = "masterpiece, best quality, highres"
|
174 |
+
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
|
|
|
|
|
|
175 |
|
176 |
options = {
|
177 |
"prompt": prompt,
|
|
|
209 |
with gr.Row():
|
210 |
with gr.Column():
|
211 |
input_image = gr.Image(type="pil", label="Input Image")
|
212 |
+
input_base64 = gr.Textbox(label="OR Paste Base64 Encoded Image", lines=3)
|
213 |
+
|
214 |
run_button = gr.Button("Enhance Image")
|
215 |
with gr.Column():
|
216 |
output_slider = ImageSlider(label="Before / After", type="numpy")
|
|
|
222 |
guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")
|
223 |
|
224 |
run_button.click(fn=gradio_process_image,
|
225 |
+
inputs=[input_image, input_base64, resolution, num_inference_steps, strength, hdr, guidance_scale],
|
226 |
outputs=output_slider)
|
227 |
|
228 |
# # Add examples with all required inputs
|