cat_or_dog / app.py
embracethesock's picture
use image model
e2cd426
raw
history blame
390 Bytes
import gradio as gr
learn = load_learner('cat_or_dog.pkl')
def predict(image):
img = PILImage.create(image)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
gr.Interface(
fn=predict,
inputs=gr.inputs.Image(shape=(512, 512)),
outputs=gr.outputs.Label(num_top_classes=3)
).launch(share=True)
demo.launch()