Spaces:
Runtime error
Runtime error
File size: 3,307 Bytes
2fec875 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
from argparse import ArgumentParser
class TrainOptions:
def __init__(self):
self.parser = ArgumentParser()
self.initialize()
def initialize(self):
self.parser.add_argument('--exp_dir', type=str, help='Path to experiment output directory')
self.parser.add_argument('--mapper_type', default='LevelsMapper', type=str, help='Which mapper to use')
self.parser.add_argument('--no_coarse_mapper', default=False, action="store_true")
self.parser.add_argument('--no_medium_mapper', default=False, action="store_true")
self.parser.add_argument('--no_fine_mapper', default=False, action="store_true")
self.parser.add_argument('--latents_train_path', default="train_faces.pt", type=str, help="The latents for the training")
self.parser.add_argument('--latents_test_path', default="test_faces.pt", type=str, help="The latents for the validation")
self.parser.add_argument('--train_dataset_size', default=5000, type=int, help="Will be used only if no latents are given")
self.parser.add_argument('--test_dataset_size', default=1000, type=int, help="Will be used only if no latents are given")
self.parser.add_argument('--batch_size', default=2, type=int, help='Batch size for training')
self.parser.add_argument('--test_batch_size', default=1, type=int, help='Batch size for testing and inference')
self.parser.add_argument('--workers', default=4, type=int, help='Number of train dataloader workers')
self.parser.add_argument('--test_workers', default=2, type=int, help='Number of test/inference dataloader workers')
self.parser.add_argument('--learning_rate', default=0.5, type=float, help='Optimizer learning rate')
self.parser.add_argument('--optim_name', default='ranger', type=str, help='Which optimizer to use')
self.parser.add_argument('--id_lambda', default=0.1, type=float, help='ID loss multiplier factor')
self.parser.add_argument('--clip_lambda', default=1.0, type=float, help='CLIP loss multiplier factor')
self.parser.add_argument('--latent_l2_lambda', default=0.8, type=float, help='Latent L2 loss multiplier factor')
self.parser.add_argument('--stylegan_weights', default='../pretrained_models/stylegan2-ffhq-config-f.pt', type=str, help='Path to StyleGAN model weights')
self.parser.add_argument('--stylegan_size', default=1024, type=int)
self.parser.add_argument('--ir_se50_weights', default='../pretrained_models/model_ir_se50.pth', type=str, help="Path to facial recognition network used in ID loss")
self.parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to StyleCLIPModel model checkpoint')
self.parser.add_argument('--max_steps', default=50000, type=int, help='Maximum number of training steps')
self.parser.add_argument('--image_interval', default=100, type=int, help='Interval for logging train images during training')
self.parser.add_argument('--board_interval', default=50, type=int, help='Interval for logging metrics to tensorboard')
self.parser.add_argument('--val_interval', default=2000, type=int, help='Validation interval')
self.parser.add_argument('--save_interval', default=2000, type=int, help='Model checkpoint interval')
self.parser.add_argument('--description', required=True, type=str, help='Driving text prompt')
def parse(self):
opts = self.parser.parse_args()
return opts |