Spaces:
Runtime error
Runtime error
File size: 2,713 Bytes
2fec875 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import torch
from torch import nn
from models.StyleCLIP.mapper import latent_mappers
from models.StyleCLIP.models.stylegan2.model import Generator
def get_keys(d, name):
if 'state_dict' in d:
d = d['state_dict']
d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name}
return d_filt
class StyleCLIPMapper(nn.Module):
def __init__(self, opts, run_id):
super(StyleCLIPMapper, self).__init__()
self.opts = opts
# Define architecture
self.mapper = self.set_mapper()
self.run_id = run_id
self.face_pool = torch.nn.AdaptiveAvgPool2d((256, 256))
# Load weights if needed
self.load_weights()
def set_mapper(self):
if self.opts.mapper_type == 'SingleMapper':
mapper = latent_mappers.SingleMapper(self.opts)
elif self.opts.mapper_type == 'LevelsMapper':
mapper = latent_mappers.LevelsMapper(self.opts)
else:
raise Exception('{} is not a valid mapper'.format(self.opts.mapper_type))
return mapper
def load_weights(self):
if self.opts.checkpoint_path is not None:
print('Loading from checkpoint: {}'.format(self.opts.checkpoint_path))
ckpt = torch.load(self.opts.checkpoint_path, map_location='cpu')
self.mapper.load_state_dict(get_keys(ckpt, 'mapper'), strict=True)
def set_G(self, new_G):
self.decoder = new_G
def forward(self, x, resize=True, latent_mask=None, input_code=False, randomize_noise=True,
inject_latent=None, return_latents=False, alpha=None):
if input_code:
codes = x
else:
codes = self.mapper(x)
if latent_mask is not None:
for i in latent_mask:
if inject_latent is not None:
if alpha is not None:
codes[:, i] = alpha * inject_latent[:, i] + (1 - alpha) * codes[:, i]
else:
codes[:, i] = inject_latent[:, i]
else:
codes[:, i] = 0
input_is_latent = not input_code
images = self.decoder.synthesis(codes, noise_mode='const')
result_latent = None
# images, result_latent = self.decoder([codes],
# input_is_latent=input_is_latent,
# randomize_noise=randomize_noise,
# return_latents=return_latents)
if resize:
images = self.face_pool(images)
if return_latents:
return images, result_latent
else:
return images
|