File size: 7,218 Bytes
c00162e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
author: lzhbrian (https://lzhbrian.me)
date: 2020.1.5
note: code is heavily borrowed from 
	https://github.com/NVlabs/ffhq-dataset
	http://dlib.net/face_landmark_detection.py.html

requirements:
	apt install cmake
	conda install Pillow numpy scipy
	pip install dlib
	# download face landmark model from:
	# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
"""
from argparse import ArgumentParser
import time
import numpy as np
import PIL
import PIL.Image
import os
import scipy
import scipy.ndimage
import dlib
import multiprocessing as mp
import math


SHAPE_PREDICTOR_PATH = "shape_predictor_68_face_landmarks.dat"


def get_landmark(filepath, predictor, i=None):
    """get landmark with dlib
    :return: np.array shape=(68, 2)
    """
    detector = dlib.get_frontal_face_detector()

    img = dlib.load_rgb_image(filepath)
    dets = detector(img, 1)

    #for k, d in enumerate(dets):
    if i is None:
        i = len(dets) - 1
    try:
        shape = predictor(img, dets[i])
    except IndexError:
        print("Face not found")
        return 
    t = list(shape.parts())
    a = []
    for tt in t:
        a.append([tt.x, tt.y])
    lm = np.array(a)
    return lm


def align_face(filepath, predictor, idx=None):
    """
    :param filepath: str
    :return: PIL Image
    """

    lm = get_landmark(filepath, predictor, i=idx)

    lm_chin = lm[0:17]  # left-right
    lm_eyebrow_left = lm[17:22]  # left-right
    lm_eyebrow_right = lm[22:27]  # left-right
    lm_nose = lm[27:31]  # top-down
    lm_nostrils = lm[31:36]  # top-down
    lm_eye_left = lm[36:42]  # left-clockwise
    lm_eye_right = lm[42:48]  # left-clockwise
    lm_mouth_outer = lm[48:60]  # left-clockwise
    lm_mouth_inner = lm[60:68]  # left-clockwise

    # Calculate auxiliary vectors.
    eye_left = np.mean(lm_eye_left, axis=0)
    eye_right = np.mean(lm_eye_right, axis=0)
    eye_avg = (eye_left + eye_right) * 0.5
    eye_to_eye = eye_right - eye_left
    mouth_left = lm_mouth_outer[0]
    mouth_right = lm_mouth_outer[6]
    mouth_avg = (mouth_left + mouth_right) * 0.5
    eye_to_mouth = mouth_avg - eye_avg

    # Choose oriented crop rectangle.
    x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
    x /= np.hypot(*x)
    x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
    y = np.flipud(x) * [-1, 1]
    c = eye_avg + eye_to_mouth * 0.1
    quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
    qsize = np.hypot(*x) * 2

    # read image
    img = PIL.Image.open(filepath)

    output_size = 256
    transform_size = 256
    enable_padding = True

    # Shrink.
    shrink = int(np.floor(qsize / output_size * 0.5))
    if shrink > 1:
        rsize = (
            int(np.rint(float(img.size[0]) / shrink)),
            int(np.rint(float(img.size[1]) / shrink)),
        )
        img = img.resize(rsize, PIL.Image.ANTIALIAS)
        quad /= shrink
        qsize /= shrink

    # Crop.
    border = max(int(np.rint(qsize * 0.1)), 3)
    crop = (
        int(np.floor(min(quad[:, 0]))),
        int(np.floor(min(quad[:, 1]))),
        int(np.ceil(max(quad[:, 0]))),
        int(np.ceil(max(quad[:, 1]))),
    )
    crop = (
        max(crop[0] - border, 0),
        max(crop[1] - border, 0),
        min(crop[2] + border, img.size[0]),
        min(crop[3] + border, img.size[1]),
    )
    if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
        img = img.crop(crop)
        quad -= crop[0:2]

    # Pad.
    pad = (
        int(np.floor(min(quad[:, 0]))),
        int(np.floor(min(quad[:, 1]))),
        int(np.ceil(max(quad[:, 0]))),
        int(np.ceil(max(quad[:, 1]))),
    )
    pad = (
        max(-pad[0] + border, 0),
        max(-pad[1] + border, 0),
        max(pad[2] - img.size[0] + border, 0),
        max(pad[3] - img.size[1] + border, 0),
    )
    if enable_padding and max(pad) > border - 4:
        pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
        img = np.pad(
            np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), "reflect"
        )
        h, w, _ = img.shape
        y, x, _ = np.ogrid[:h, :w, :1]
        mask = np.maximum(
            1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
            1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]),
        )
        blur = qsize * 0.02
        img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(
            mask * 3.0 + 1.0, 0.0, 1.0
        )
        img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
        img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), "RGB")
        quad += pad[:2]

    # Transform.
    img = img.transform(
        (transform_size, transform_size),
        PIL.Image.QUAD,
        (quad + 0.5).flatten(),
        PIL.Image.BILINEAR,
    )
    if output_size < transform_size:
        img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)

    # Save aligned image.
    return img


def chunks(lst, n):
    """Yield successive n-sized chunks from lst."""
    for i in range(0, len(lst), n):
        yield lst[i : i + n]


def extract_on_paths(file_paths):
    predictor = dlib.shape_predictor(SHAPE_PREDICTOR_PATH)
    pid = mp.current_process().name
    print(f"\t{pid} is starting to extract on #{len(file_paths)} images")
    tot_count = len(file_paths)
    count = 0
    for file_path, res_path in file_paths:
        count += 1
        if count % 100 == 0:
            print(f"{pid} done with {count}/{tot_count}")
        try:
            res = align_face(file_path, predictor)
            res = res.convert("RGB")
            os.makedirs(os.path.dirname(res_path), exist_ok=True)
            res.save(res_path)
        except Exception:
            continue
    print("\tDone!")


def parse_args():
    parser = ArgumentParser(add_help=False)
    parser.add_argument("--num_threads", type=int, default=1)
    parser.add_argument("--root_path", type=str, default="")
    args = parser.parse_args()
    return args


def run(args):
    root_path = args.root_path
    out_crops_path = root_path + "_crops"
    if not os.path.exists(out_crops_path):
        os.makedirs(out_crops_path, exist_ok=True)

    file_paths = []
    for root, dirs, files in os.walk(root_path):
        for file in files:
            file_path = os.path.join(root, file)
            fname = os.path.join(out_crops_path, os.path.relpath(file_path, root_path))
            res_path = f"{os.path.splitext(fname)[0]}.jpg"
            if os.path.splitext(file_path)[1] == ".txt" or os.path.exists(res_path):
                continue
            file_paths.append((file_path, res_path))

    file_chunks = list(
        chunks(file_paths, int(math.ceil(len(file_paths) / args.num_threads)))
    )
    print(len(file_chunks))
    pool = mp.Pool(args.num_threads)
    print(f"Running on {len(file_paths)} paths\nHere we goooo")
    tic = time.time()
    pool.map(extract_on_paths, file_chunks)
    toc = time.time()
    print(f"Mischief managed in {str(toc - tic)}s")


if __name__ == "__main__":
    args = parse_args()
    run(args)