Spaces:
Runtime error
Runtime error
File size: 7,101 Bytes
2fec875 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
import pickle
import numpy as np
from dnnlib import tflib
import tensorflow as tf
import argparse
def LoadModel(dataset_name):
# Initialize TensorFlow.
tflib.init_tf()
model_path='./model/'
model_name=dataset_name+'.pkl'
tmp=os.path.join(model_path,model_name)
with open(tmp, 'rb') as f:
_, _, Gs = pickle.load(f)
return Gs
def lerp(a,b,t):
return a + (b - a) * t
#stylegan-ada
def SelectName(layer_name,suffix):
if suffix==None:
tmp1='add:0' in layer_name
tmp2='shape=(?,' in layer_name
tmp4='G_synthesis_1' in layer_name
tmp= tmp1 and tmp2 and tmp4
else:
tmp1=('/Conv0_up'+suffix) in layer_name
tmp2=('/Conv1'+suffix) in layer_name
tmp3=('4x4/Conv'+suffix) in layer_name
tmp4='G_synthesis_1' in layer_name
tmp5=('/ToRGB'+suffix) in layer_name
tmp= (tmp1 or tmp2 or tmp3 or tmp5) and tmp4
return tmp
def GetSNames(suffix):
#get style tensor name
with tf.Session() as sess:
op = sess.graph.get_operations()
layers=[m.values() for m in op]
select_layers=[]
for layer in layers:
layer_name=str(layer)
if SelectName(layer_name,suffix):
select_layers.append(layer[0])
return select_layers
def SelectName2(layer_name):
tmp1='mod_bias' in layer_name
tmp2='mod_weight' in layer_name
tmp3='ToRGB' in layer_name
tmp= (tmp1 or tmp2) and (not tmp3)
return tmp
def GetKName(Gs):
layers=[var for name, var in Gs.components.synthesis.vars.items()]
select_layers=[]
for layer in layers:
layer_name=str(layer)
if SelectName2(layer_name):
select_layers.append(layer)
return select_layers
def GetCode(Gs,random_state,num_img,num_once,dataset_name):
rnd = np.random.RandomState(random_state) #5
truncation_psi=0.7
truncation_cutoff=8
dlatent_avg=Gs.get_var('dlatent_avg')
dlatents=np.zeros((num_img,512),dtype='float32')
for i in range(int(num_img/num_once)):
src_latents = rnd.randn(num_once, Gs.input_shape[1])
src_dlatents = Gs.components.mapping.run(src_latents, None) # [seed, layer, component]
# Apply truncation trick.
if truncation_psi is not None and truncation_cutoff is not None:
layer_idx = np.arange(src_dlatents.shape[1])[np.newaxis, :, np.newaxis]
ones = np.ones(layer_idx.shape, dtype=np.float32)
coefs = np.where(layer_idx < truncation_cutoff, truncation_psi * ones, ones)
src_dlatents_np=lerp(dlatent_avg, src_dlatents, coefs)
src_dlatents=src_dlatents_np[:,0,:].astype('float32')
dlatents[(i*num_once):((i+1)*num_once),:]=src_dlatents
print('get all z and w')
tmp='./npy/'+dataset_name+'/W'
np.save(tmp,dlatents)
def GetImg(Gs,num_img,num_once,dataset_name,save_name='images'):
print('Generate Image')
tmp='./npy/'+dataset_name+'/W.npy'
dlatents=np.load(tmp)
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
all_images=[]
for i in range(int(num_img/num_once)):
print(i)
images=[]
for k in range(num_once):
tmp=dlatents[i*num_once+k]
tmp=tmp[None,None,:]
tmp=np.tile(tmp,(1,Gs.components.synthesis.input_shape[1],1))
image2= Gs.components.synthesis.run(tmp, randomize_noise=False, output_transform=fmt)
images.append(image2)
images=np.concatenate(images)
all_images.append(images)
all_images=np.concatenate(all_images)
tmp='./npy/'+dataset_name+'/'+save_name
np.save(tmp,all_images)
def GetS(dataset_name,num_img):
print('Generate S')
tmp='./npy/'+dataset_name+'/W.npy'
dlatents=np.load(tmp)[:num_img]
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
Gs=LoadModel(dataset_name)
Gs.print_layers() #for ada
select_layers1=GetSNames(suffix=None) #None,'/mul_1:0','/mod_weight/read:0','/MatMul:0'
dlatents=dlatents[:,None,:]
dlatents=np.tile(dlatents,(1,Gs.components.synthesis.input_shape[1],1))
all_s = sess.run(
select_layers1,
feed_dict={'G_synthesis_1/dlatents_in:0': dlatents})
layer_names=[layer.name for layer in select_layers1]
save_tmp=[layer_names,all_s]
return save_tmp
def convert_images_to_uint8(images, drange=[-1,1], nchw_to_nhwc=False):
"""Convert a minibatch of images from float32 to uint8 with configurable dynamic range.
Can be used as an output transformation for Network.run().
"""
if nchw_to_nhwc:
images = np.transpose(images, [0, 2, 3, 1])
scale = 255 / (drange[1] - drange[0])
images = images * scale + (0.5 - drange[0] * scale)
np.clip(images, 0, 255, out=images)
images=images.astype('uint8')
return images
def GetCodeMS(dlatents):
m=[]
std=[]
for i in range(len(dlatents)):
tmp= dlatents[i]
tmp_mean=tmp.mean(axis=0)
tmp_std=tmp.std(axis=0)
m.append(tmp_mean)
std.append(tmp_std)
return m,std
#%%
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--dataset_name',type=str,default='ffhq',
help='name of dataset, for example, ffhq')
parser.add_argument('--code_type',choices=['w','s','s_mean_std'],default='w')
args = parser.parse_args()
random_state=5
num_img=100_000
num_once=1_000
dataset_name=args.dataset_name
if not os.path.isfile('./model/'+dataset_name+'.pkl'):
url='https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/'
name='stylegan2-'+dataset_name+'-config-f.pkl'
os.system('wget ' +url+name + ' -P ./model/')
os.system('mv ./model/'+name+' ./model/'+dataset_name+'.pkl')
if not os.path.isdir('./npy/'+dataset_name):
os.system('mkdir ./npy/'+dataset_name)
if args.code_type=='w':
Gs=LoadModel(dataset_name=dataset_name)
GetCode(Gs,random_state,num_img,num_once,dataset_name)
# GetImg(Gs,num_img=num_img,num_once=num_once,dataset_name=dataset_name,save_name='images_100K') #no need
elif args.code_type=='s':
save_name='S'
save_tmp=GetS(dataset_name,num_img=2_000)
tmp='./npy/'+dataset_name+'/'+save_name
with open(tmp, "wb") as fp:
pickle.dump(save_tmp, fp)
elif args.code_type=='s_mean_std':
save_tmp=GetS(dataset_name,num_img=num_img)
dlatents=save_tmp[1]
m,std=GetCodeMS(dlatents)
save_tmp=[m,std]
save_name='S_mean_std'
tmp='./npy/'+dataset_name+'/'+save_name
with open(tmp, "wb") as fp:
pickle.dump(save_tmp, fp)
|