Spaces:
Runtime error
Runtime error
File size: 7,979 Bytes
2fec875 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import os.path
import pickle
import numpy as np
import tensorflow as tf
from dnnlib import tflib
from global_directions.utils.visualizer import HtmlPageVisualizer
def Vis(bname,suffix,out,rownames=None,colnames=None):
num_images=out.shape[0]
step=out.shape[1]
if colnames is None:
colnames=[f'Step {i:02d}' for i in range(1, step + 1)]
if rownames is None:
rownames=[str(i) for i in range(num_images)]
visualizer = HtmlPageVisualizer(
num_rows=num_images, num_cols=step + 1, viz_size=256)
visualizer.set_headers(
['Name'] +colnames)
for i in range(num_images):
visualizer.set_cell(i, 0, text=rownames[i])
for i in range(num_images):
for k in range(step):
image=out[i,k,:,:,:]
visualizer.set_cell(i, 1+k, image=image)
# Save results.
visualizer.save(f'./html/'+bname+'_'+suffix+'.html')
def LoadData(img_path):
tmp=img_path+'S'
with open(tmp, "rb") as fp: #Pickling
s_names,all_s=pickle.load( fp)
dlatents=all_s
pindexs=[]
mindexs=[]
for i in range(len(s_names)):
name=s_names[i]
if not('ToRGB' in name):
mindexs.append(i)
else:
pindexs.append(i)
tmp=img_path+'S_mean_std'
with open(tmp, "rb") as fp: #Pickling
m,std=pickle.load( fp)
return dlatents,s_names,mindexs,pindexs,m,std
def LoadModel(model_path,model_name):
# Initialize TensorFlow.
tflib.init_tf()
tmp=os.path.join(model_path,model_name)
with open(tmp, 'rb') as f:
_, _, Gs = pickle.load(f)
Gs.print_layers()
return Gs
def convert_images_to_uint8(images, drange=[-1,1], nchw_to_nhwc=False):
"""Convert a minibatch of images from float32 to uint8 with configurable dynamic range.
Can be used as an output transformation for Network.run().
"""
if nchw_to_nhwc:
images = np.transpose(images, [0, 2, 3, 1])
scale = 255 / (drange[1] - drange[0])
images = images * scale + (0.5 - drange[0] * scale)
np.clip(images, 0, 255, out=images)
images=images.astype('uint8')
return images
def convert_images_from_uint8(images, drange=[-1,1], nhwc_to_nchw=False):
"""Convert a minibatch of images from uint8 to float32 with configurable dynamic range.
Can be used as an input transformation for Network.run().
"""
if nhwc_to_nchw:
images=np.rollaxis(images, 3, 1)
return images/ 255 *(drange[1] - drange[0])+ drange[0]
class Manipulator():
def __init__(self,dataset_name='ffhq'):
self.file_path='./'
self.img_path=self.file_path+'npy/'+dataset_name+'/'
self.model_path=self.file_path+'model/'
self.dataset_name=dataset_name
self.model_name=dataset_name+'.pkl'
self.alpha=[0] #manipulation strength
self.num_images=10
self.img_index=0 #which image to start
self.viz_size=256
self.manipulate_layers=None #which layer to manipulate, list
self.dlatents,self.s_names,self.mindexs,self.pindexs,self.code_mean,self.code_std=LoadData(self.img_path)
self.sess=tf.InteractiveSession()
init = tf.global_variables_initializer()
self.sess.run(init)
self.Gs=LoadModel(self.model_path,self.model_name)
self.num_layers=len(self.dlatents)
self.Vis=Vis
self.noise_constant={}
for i in range(len(self.s_names)):
tmp1=self.s_names[i].split('/')
if not 'ToRGB' in tmp1:
tmp1[-1]='random_normal:0'
size=int(tmp1[1].split('x')[0])
tmp1='/'.join(tmp1)
tmp=(1,1,size,size)
self.noise_constant[tmp1]=np.random.random(tmp)
tmp=self.Gs.components.synthesis.input_shape[1]
d={}
d['G_synthesis_1/dlatents_in:0']=np.zeros([1,tmp,512])
names=list(self.noise_constant.keys())
tmp=tflib.run(names,d)
for i in range(len(names)):
self.noise_constant[names[i]]=tmp[i]
self.fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
self.img_size=self.Gs.output_shape[-1]
def GenerateImg(self,codes):
num_images,step=codes[0].shape[:2]
out=np.zeros((num_images,step,self.img_size,self.img_size,3),dtype='uint8')
for i in range(num_images):
for k in range(step):
d={}
for m in range(len(self.s_names)):
d[self.s_names[m]]=codes[m][i,k][None,:] #need to change
d['G_synthesis_1/4x4/Const/Shape:0']=np.array([1,18, 512], dtype=np.int32)
d.update(self.noise_constant)
img=tflib.run('G_synthesis_1/images_out:0', d)
image=convert_images_to_uint8(img, nchw_to_nhwc=True)
out[i,k,:,:,:]=image[0]
return out
def MSCode(self,dlatent_tmp,boundary_tmp):
step=len(self.alpha)
dlatent_tmp1=[tmp.reshape((self.num_images,-1)) for tmp in dlatent_tmp]
dlatent_tmp2=[np.tile(tmp[:,None],(1,step,1)) for tmp in dlatent_tmp1] # (10, 7, 512)
l=np.array(self.alpha)
l=l.reshape(
[step if axis == 1 else 1 for axis in range(dlatent_tmp2[0].ndim)])
if type(self.manipulate_layers)==int:
tmp=[self.manipulate_layers]
elif type(self.manipulate_layers)==list:
tmp=self.manipulate_layers
elif self.manipulate_layers is None:
tmp=np.arange(len(boundary_tmp))
else:
raise ValueError('manipulate_layers is wrong')
for i in tmp:
dlatent_tmp2[i]+=l*boundary_tmp[i]
codes=[]
for i in range(len(dlatent_tmp2)):
tmp=list(dlatent_tmp[i].shape)
tmp.insert(1,step)
codes.append(dlatent_tmp2[i].reshape(tmp))
return codes
def EditOne(self,bname,dlatent_tmp=None):
if dlatent_tmp==None:
dlatent_tmp=[tmp[self.img_index:(self.img_index+self.num_images)] for tmp in self.dlatents]
boundary_tmp=[]
for i in range(len(self.boundary)):
tmp=self.boundary[i]
if len(tmp)<=bname:
boundary_tmp.append([])
else:
boundary_tmp.append(tmp[bname])
codes=self.MSCode(dlatent_tmp,boundary_tmp)
out=self.GenerateImg(codes)
return codes,out
def EditOneC(self,cindex,dlatent_tmp=None):
if dlatent_tmp==None:
dlatent_tmp=[tmp[self.img_index:(self.img_index+self.num_images)] for tmp in self.dlatents]
boundary_tmp=[[] for i in range(len(self.dlatents))]
#'only manipulate 1 layer and one channel'
assert len(self.manipulate_layers)==1
ml=self.manipulate_layers[0]
tmp=dlatent_tmp[ml].shape[1] #ada
tmp1=np.zeros(tmp)
tmp1[cindex]=self.code_std[ml][cindex] #1
boundary_tmp[ml]=tmp1
codes=self.MSCode(dlatent_tmp,boundary_tmp)
out=self.GenerateImg(codes)
return codes,out
def W2S(self,dlatent_tmp):
all_s = self.sess.run(
self.s_names,
feed_dict={'G_synthesis_1/dlatents_in:0': dlatent_tmp})
return all_s
#%%
if __name__ == "__main__":
M=Manipulator(dataset_name='ffhq')
#%%
M.alpha=[-5,0,5]
M.num_images=20
lindex,cindex=6,501
M.manipulate_layers=[lindex]
codes,out=M.EditOneC(cindex) #dlatent_tmp
tmp=str(M.manipulate_layers)+'_'+str(cindex)
M.Vis(tmp,'c',out)
|