Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from tqdm import tqdm | |
from color_transfer_loss import ColorTransferLoss | |
from configs import paths_config, hyperparameters, global_config | |
from training.coaches.base_coach import BaseCoach | |
from utils.log_utils import log_images_from_w | |
class MultiIDCoach(BaseCoach): | |
def __init__(self, data_loader, use_wandb): | |
super().__init__(data_loader, use_wandb) | |
def train(self): | |
self.G.synthesis.train() | |
self.G.mapping.train() | |
w_path_dir = f"{paths_config.embedding_base_dir}/{paths_config.input_data_id}" | |
os.makedirs(w_path_dir, exist_ok=True) | |
os.makedirs(f"{w_path_dir}/{paths_config.pti_results_keyword}", exist_ok=True) | |
use_ball_holder = True | |
w_pivots = [] | |
images = [] | |
for fname, image in self.data_loader: | |
if self.image_counter >= hyperparameters.max_images_to_invert: | |
break | |
image_name = fname[0] | |
if hyperparameters.first_inv_type == "w+": | |
embedding_dir = ( | |
f"{w_path_dir}/{paths_config.e4e_results_keyword}/{image_name}" | |
) | |
else: | |
embedding_dir = ( | |
f"{w_path_dir}/{paths_config.pti_results_keyword}/{image_name}" | |
) | |
os.makedirs(embedding_dir, exist_ok=True) | |
w_pivot = self.get_inversion(w_path_dir, image_name, image) | |
w_pivots.append(w_pivot) | |
images.append((image_name, image)) | |
self.image_counter += 1 | |
for i in tqdm(range(hyperparameters.max_pti_steps)): | |
self.image_counter = 0 | |
for data, w_pivot in zip(images, w_pivots): | |
image_name, image = data | |
if self.image_counter >= hyperparameters.max_images_to_invert: | |
break | |
real_images_batch = image.to(global_config.device) | |
generated_images = self.forward(w_pivot) | |
loss, l2_loss_val, loss_lpips = self.calc_loss( | |
generated_images, | |
real_images_batch, | |
image_name, | |
self.G, | |
use_ball_holder, | |
w_pivot, | |
{}, | |
) | |
self.optimizer.zero_grad() | |
loss.backward() | |
self.optimizer.step() | |
use_ball_holder = ( | |
global_config.training_step | |
% hyperparameters.locality_regularization_interval | |
== 0 | |
) | |
global_config.training_step += 1 | |
self.image_counter += 1 | |
if self.use_wandb: | |
log_images_from_w(w_pivots, self.G, [image[0] for image in images]) | |
torch.save( | |
self.G, | |
f"{paths_config.checkpoints_dir}/model_{global_config.run_name}_multi_id.pt", | |
) | |