Spaces:
Runtime error
Runtime error
import gradio as gr | |
import utils | |
from PIL import Image | |
import torch | |
import math | |
from torchvision import transforms | |
device = "cpu" | |
years = [str(y) for y in range(1880, 2020, 10)] | |
orig_models = {} | |
for year in years: | |
G, w_avg = utils.load_stylegan2(f"pretrained_models/{year}.pkl", device) | |
orig_models[year] = { "G": G.eval()} | |
def run_alignment(image_path,idx=None): | |
import dlib | |
from align_all_parallel import align_face | |
predictor = dlib.shape_predictor("pretrained_models/shape_predictor_68_face_landmarks.dat") | |
aligned_image = align_face(filepath=image_path, predictor=predictor, idx=idx) | |
print("Aligned image has shape: {}".format(aligned_image.size)) | |
return aligned_image | |
def predict(inp): | |
#with torch.no_grad(): | |
return inp | |
gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image(type="pil"), | |
#examples=["lion.jpg", "cheetah.jpg"] | |
).launch() | |