Spaces:
Runtime error
Runtime error
echen01
commited on
Commit
•
0513aaf
1
Parent(s):
3eee23c
add app templtae
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +34 -0
- dnnlib/__init__.py +9 -0
- dnnlib/__pycache__/__init__.cpython-36.pyc +0 -0
- dnnlib/__pycache__/__init__.cpython-38.pyc +0 -0
- dnnlib/__pycache__/__init__.cpython-39.pyc +0 -0
- dnnlib/__pycache__/util.cpython-36.pyc +0 -0
- dnnlib/__pycache__/util.cpython-38.pyc +0 -0
- dnnlib/__pycache__/util.cpython-39.pyc +0 -0
- dnnlib/util.py +477 -0
- legacy.py +408 -0
- torch_utils/__init__.py +9 -0
- torch_utils/__pycache__/__init__.cpython-36.pyc +0 -0
- torch_utils/__pycache__/__init__.cpython-38.pyc +0 -0
- torch_utils/__pycache__/__init__.cpython-39.pyc +0 -0
- torch_utils/__pycache__/custom_ops.cpython-36.pyc +0 -0
- torch_utils/__pycache__/custom_ops.cpython-38.pyc +0 -0
- torch_utils/__pycache__/custom_ops.cpython-39.pyc +0 -0
- torch_utils/__pycache__/misc.cpython-36.pyc +0 -0
- torch_utils/__pycache__/misc.cpython-38.pyc +0 -0
- torch_utils/__pycache__/misc.cpython-39.pyc +0 -0
- torch_utils/__pycache__/persistence.cpython-36.pyc +0 -0
- torch_utils/__pycache__/persistence.cpython-38.pyc +0 -0
- torch_utils/__pycache__/persistence.cpython-39.pyc +0 -0
- torch_utils/custom_ops.py +126 -0
- torch_utils/misc.py +332 -0
- torch_utils/ops/__init__.py +9 -0
- torch_utils/ops/__pycache__/__init__.cpython-36.pyc +0 -0
- torch_utils/ops/__pycache__/__init__.cpython-38.pyc +0 -0
- torch_utils/ops/__pycache__/__init__.cpython-39.pyc +0 -0
- torch_utils/ops/__pycache__/bias_act.cpython-36.pyc +0 -0
- torch_utils/ops/__pycache__/bias_act.cpython-38.pyc +0 -0
- torch_utils/ops/__pycache__/bias_act.cpython-39.pyc +0 -0
- torch_utils/ops/__pycache__/conv2d_gradfix.cpython-36.pyc +0 -0
- torch_utils/ops/__pycache__/conv2d_gradfix.cpython-38.pyc +0 -0
- torch_utils/ops/__pycache__/conv2d_gradfix.cpython-39.pyc +0 -0
- torch_utils/ops/__pycache__/conv2d_resample.cpython-36.pyc +0 -0
- torch_utils/ops/__pycache__/conv2d_resample.cpython-38.pyc +0 -0
- torch_utils/ops/__pycache__/conv2d_resample.cpython-39.pyc +0 -0
- torch_utils/ops/__pycache__/fma.cpython-36.pyc +0 -0
- torch_utils/ops/__pycache__/fma.cpython-38.pyc +0 -0
- torch_utils/ops/__pycache__/fma.cpython-39.pyc +0 -0
- torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-36.pyc +0 -0
- torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-38.pyc +0 -0
- torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-39.pyc +0 -0
- torch_utils/ops/__pycache__/upfirdn2d.cpython-36.pyc +0 -0
- torch_utils/ops/__pycache__/upfirdn2d.cpython-38.pyc +0 -0
- torch_utils/ops/__pycache__/upfirdn2d.cpython-39.pyc +0 -0
- torch_utils/ops/bias_act.cpp +99 -0
- torch_utils/ops/bias_act.cu +173 -0
- torch_utils/ops/bias_act.h +38 -0
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import utils
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import math
|
6 |
+
from torchvision import transforms
|
7 |
+
|
8 |
+
|
9 |
+
device = "cpu"
|
10 |
+
years = [str(y) for y in range(1880, 2020, 10)]
|
11 |
+
|
12 |
+
|
13 |
+
orig_models = {}
|
14 |
+
|
15 |
+
for year in years:
|
16 |
+
G, w_avg = utils.load_stylegan2(f"pretrained_models/{year}.pkl", device)
|
17 |
+
orig_models[year] = { "G": G.eval()}
|
18 |
+
|
19 |
+
transform = transforms.Compose([
|
20 |
+
transforms.Resize((256, 256)),
|
21 |
+
transforms.ToTensor(),
|
22 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
23 |
+
|
24 |
+
# Download human-readable labels for ImageNet.
|
25 |
+
def predict(inp):
|
26 |
+
#with torch.no_grad():
|
27 |
+
return inp
|
28 |
+
|
29 |
+
|
30 |
+
gr.Interface(fn=predict,
|
31 |
+
inputs=gr.Image(type="pil"),
|
32 |
+
outputs=gr.Image(type="pil"),
|
33 |
+
#examples=["lion.jpg", "cheetah.jpg"]
|
34 |
+
).launch()
|
dnnlib/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from .util import EasyDict, make_cache_dir_path
|
dnnlib/__pycache__/__init__.cpython-36.pyc
ADDED
Binary file (218 Bytes). View file
|
|
dnnlib/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (226 Bytes). View file
|
|
dnnlib/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (226 Bytes). View file
|
|
dnnlib/__pycache__/util.cpython-36.pyc
ADDED
Binary file (13.6 kB). View file
|
|
dnnlib/__pycache__/util.cpython-38.pyc
ADDED
Binary file (13.7 kB). View file
|
|
dnnlib/__pycache__/util.cpython-39.pyc
ADDED
Binary file (13.8 kB). View file
|
|
dnnlib/util.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Miscellaneous utility classes and functions."""
|
10 |
+
|
11 |
+
import ctypes
|
12 |
+
import fnmatch
|
13 |
+
import importlib
|
14 |
+
import inspect
|
15 |
+
import numpy as np
|
16 |
+
import os
|
17 |
+
import shutil
|
18 |
+
import sys
|
19 |
+
import types
|
20 |
+
import io
|
21 |
+
import pickle
|
22 |
+
import re
|
23 |
+
import requests
|
24 |
+
import html
|
25 |
+
import hashlib
|
26 |
+
import glob
|
27 |
+
import tempfile
|
28 |
+
import urllib
|
29 |
+
import urllib.request
|
30 |
+
import uuid
|
31 |
+
|
32 |
+
from distutils.util import strtobool
|
33 |
+
from typing import Any, List, Tuple, Union
|
34 |
+
|
35 |
+
|
36 |
+
# Util classes
|
37 |
+
# ------------------------------------------------------------------------------------------
|
38 |
+
|
39 |
+
|
40 |
+
class EasyDict(dict):
|
41 |
+
"""Convenience class that behaves like a dict but allows access with the attribute syntax."""
|
42 |
+
|
43 |
+
def __getattr__(self, name: str) -> Any:
|
44 |
+
try:
|
45 |
+
return self[name]
|
46 |
+
except KeyError:
|
47 |
+
raise AttributeError(name)
|
48 |
+
|
49 |
+
def __setattr__(self, name: str, value: Any) -> None:
|
50 |
+
self[name] = value
|
51 |
+
|
52 |
+
def __delattr__(self, name: str) -> None:
|
53 |
+
del self[name]
|
54 |
+
|
55 |
+
|
56 |
+
class Logger(object):
|
57 |
+
"""Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file."""
|
58 |
+
|
59 |
+
def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True):
|
60 |
+
self.file = None
|
61 |
+
|
62 |
+
if file_name is not None:
|
63 |
+
self.file = open(file_name, file_mode)
|
64 |
+
|
65 |
+
self.should_flush = should_flush
|
66 |
+
self.stdout = sys.stdout
|
67 |
+
self.stderr = sys.stderr
|
68 |
+
|
69 |
+
sys.stdout = self
|
70 |
+
sys.stderr = self
|
71 |
+
|
72 |
+
def __enter__(self) -> "Logger":
|
73 |
+
return self
|
74 |
+
|
75 |
+
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
|
76 |
+
self.close()
|
77 |
+
|
78 |
+
def write(self, text: Union[str, bytes]) -> None:
|
79 |
+
"""Write text to stdout (and a file) and optionally flush."""
|
80 |
+
if isinstance(text, bytes):
|
81 |
+
text = text.decode()
|
82 |
+
if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
|
83 |
+
return
|
84 |
+
|
85 |
+
if self.file is not None:
|
86 |
+
self.file.write(text)
|
87 |
+
|
88 |
+
self.stdout.write(text)
|
89 |
+
|
90 |
+
if self.should_flush:
|
91 |
+
self.flush()
|
92 |
+
|
93 |
+
def flush(self) -> None:
|
94 |
+
"""Flush written text to both stdout and a file, if open."""
|
95 |
+
if self.file is not None:
|
96 |
+
self.file.flush()
|
97 |
+
|
98 |
+
self.stdout.flush()
|
99 |
+
|
100 |
+
def close(self) -> None:
|
101 |
+
"""Flush, close possible files, and remove stdout/stderr mirroring."""
|
102 |
+
self.flush()
|
103 |
+
|
104 |
+
# if using multiple loggers, prevent closing in wrong order
|
105 |
+
if sys.stdout is self:
|
106 |
+
sys.stdout = self.stdout
|
107 |
+
if sys.stderr is self:
|
108 |
+
sys.stderr = self.stderr
|
109 |
+
|
110 |
+
if self.file is not None:
|
111 |
+
self.file.close()
|
112 |
+
self.file = None
|
113 |
+
|
114 |
+
|
115 |
+
# Cache directories
|
116 |
+
# ------------------------------------------------------------------------------------------
|
117 |
+
|
118 |
+
_dnnlib_cache_dir = None
|
119 |
+
|
120 |
+
def set_cache_dir(path: str) -> None:
|
121 |
+
global _dnnlib_cache_dir
|
122 |
+
_dnnlib_cache_dir = path
|
123 |
+
|
124 |
+
def make_cache_dir_path(*paths: str) -> str:
|
125 |
+
if _dnnlib_cache_dir is not None:
|
126 |
+
return os.path.join(_dnnlib_cache_dir, *paths)
|
127 |
+
if 'DNNLIB_CACHE_DIR' in os.environ:
|
128 |
+
return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths)
|
129 |
+
if 'HOME' in os.environ:
|
130 |
+
return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths)
|
131 |
+
if 'USERPROFILE' in os.environ:
|
132 |
+
return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths)
|
133 |
+
return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths)
|
134 |
+
|
135 |
+
# Small util functions
|
136 |
+
# ------------------------------------------------------------------------------------------
|
137 |
+
|
138 |
+
|
139 |
+
def format_time(seconds: Union[int, float]) -> str:
|
140 |
+
"""Convert the seconds to human readable string with days, hours, minutes and seconds."""
|
141 |
+
s = int(np.rint(seconds))
|
142 |
+
|
143 |
+
if s < 60:
|
144 |
+
return "{0}s".format(s)
|
145 |
+
elif s < 60 * 60:
|
146 |
+
return "{0}m {1:02}s".format(s // 60, s % 60)
|
147 |
+
elif s < 24 * 60 * 60:
|
148 |
+
return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60)
|
149 |
+
else:
|
150 |
+
return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60)
|
151 |
+
|
152 |
+
|
153 |
+
def ask_yes_no(question: str) -> bool:
|
154 |
+
"""Ask the user the question until the user inputs a valid answer."""
|
155 |
+
while True:
|
156 |
+
try:
|
157 |
+
print("{0} [y/n]".format(question))
|
158 |
+
return strtobool(input().lower())
|
159 |
+
except ValueError:
|
160 |
+
pass
|
161 |
+
|
162 |
+
|
163 |
+
def tuple_product(t: Tuple) -> Any:
|
164 |
+
"""Calculate the product of the tuple elements."""
|
165 |
+
result = 1
|
166 |
+
|
167 |
+
for v in t:
|
168 |
+
result *= v
|
169 |
+
|
170 |
+
return result
|
171 |
+
|
172 |
+
|
173 |
+
_str_to_ctype = {
|
174 |
+
"uint8": ctypes.c_ubyte,
|
175 |
+
"uint16": ctypes.c_uint16,
|
176 |
+
"uint32": ctypes.c_uint32,
|
177 |
+
"uint64": ctypes.c_uint64,
|
178 |
+
"int8": ctypes.c_byte,
|
179 |
+
"int16": ctypes.c_int16,
|
180 |
+
"int32": ctypes.c_int32,
|
181 |
+
"int64": ctypes.c_int64,
|
182 |
+
"float32": ctypes.c_float,
|
183 |
+
"float64": ctypes.c_double
|
184 |
+
}
|
185 |
+
|
186 |
+
|
187 |
+
def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]:
|
188 |
+
"""Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes."""
|
189 |
+
type_str = None
|
190 |
+
|
191 |
+
if isinstance(type_obj, str):
|
192 |
+
type_str = type_obj
|
193 |
+
elif hasattr(type_obj, "__name__"):
|
194 |
+
type_str = type_obj.__name__
|
195 |
+
elif hasattr(type_obj, "name"):
|
196 |
+
type_str = type_obj.name
|
197 |
+
else:
|
198 |
+
raise RuntimeError("Cannot infer type name from input")
|
199 |
+
|
200 |
+
assert type_str in _str_to_ctype.keys()
|
201 |
+
|
202 |
+
my_dtype = np.dtype(type_str)
|
203 |
+
my_ctype = _str_to_ctype[type_str]
|
204 |
+
|
205 |
+
assert my_dtype.itemsize == ctypes.sizeof(my_ctype)
|
206 |
+
|
207 |
+
return my_dtype, my_ctype
|
208 |
+
|
209 |
+
|
210 |
+
def is_pickleable(obj: Any) -> bool:
|
211 |
+
try:
|
212 |
+
with io.BytesIO() as stream:
|
213 |
+
pickle.dump(obj, stream)
|
214 |
+
return True
|
215 |
+
except:
|
216 |
+
return False
|
217 |
+
|
218 |
+
|
219 |
+
# Functionality to import modules/objects by name, and call functions by name
|
220 |
+
# ------------------------------------------------------------------------------------------
|
221 |
+
|
222 |
+
def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]:
|
223 |
+
"""Searches for the underlying module behind the name to some python object.
|
224 |
+
Returns the module and the object name (original name with module part removed)."""
|
225 |
+
|
226 |
+
# allow convenience shorthands, substitute them by full names
|
227 |
+
obj_name = re.sub("^np.", "numpy.", obj_name)
|
228 |
+
obj_name = re.sub("^tf.", "tensorflow.", obj_name)
|
229 |
+
|
230 |
+
# list alternatives for (module_name, local_obj_name)
|
231 |
+
parts = obj_name.split(".")
|
232 |
+
name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)]
|
233 |
+
|
234 |
+
# try each alternative in turn
|
235 |
+
for module_name, local_obj_name in name_pairs:
|
236 |
+
try:
|
237 |
+
module = importlib.import_module(module_name) # may raise ImportError
|
238 |
+
get_obj_from_module(module, local_obj_name) # may raise AttributeError
|
239 |
+
return module, local_obj_name
|
240 |
+
except:
|
241 |
+
pass
|
242 |
+
|
243 |
+
# maybe some of the modules themselves contain errors?
|
244 |
+
for module_name, _local_obj_name in name_pairs:
|
245 |
+
try:
|
246 |
+
importlib.import_module(module_name) # may raise ImportError
|
247 |
+
except ImportError:
|
248 |
+
if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"):
|
249 |
+
raise
|
250 |
+
|
251 |
+
# maybe the requested attribute is missing?
|
252 |
+
for module_name, local_obj_name in name_pairs:
|
253 |
+
try:
|
254 |
+
module = importlib.import_module(module_name) # may raise ImportError
|
255 |
+
get_obj_from_module(module, local_obj_name) # may raise AttributeError
|
256 |
+
except ImportError:
|
257 |
+
pass
|
258 |
+
|
259 |
+
# we are out of luck, but we have no idea why
|
260 |
+
raise ImportError(obj_name)
|
261 |
+
|
262 |
+
|
263 |
+
def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any:
|
264 |
+
"""Traverses the object name and returns the last (rightmost) python object."""
|
265 |
+
if obj_name == '':
|
266 |
+
return module
|
267 |
+
obj = module
|
268 |
+
for part in obj_name.split("."):
|
269 |
+
obj = getattr(obj, part)
|
270 |
+
return obj
|
271 |
+
|
272 |
+
|
273 |
+
def get_obj_by_name(name: str) -> Any:
|
274 |
+
"""Finds the python object with the given name."""
|
275 |
+
module, obj_name = get_module_from_obj_name(name)
|
276 |
+
return get_obj_from_module(module, obj_name)
|
277 |
+
|
278 |
+
|
279 |
+
def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any:
|
280 |
+
"""Finds the python object with the given name and calls it as a function."""
|
281 |
+
assert func_name is not None
|
282 |
+
func_obj = get_obj_by_name(func_name)
|
283 |
+
assert callable(func_obj)
|
284 |
+
return func_obj(*args, **kwargs)
|
285 |
+
|
286 |
+
|
287 |
+
def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any:
|
288 |
+
"""Finds the python class with the given name and constructs it with the given arguments."""
|
289 |
+
return call_func_by_name(*args, func_name=class_name, **kwargs)
|
290 |
+
|
291 |
+
|
292 |
+
def get_module_dir_by_obj_name(obj_name: str) -> str:
|
293 |
+
"""Get the directory path of the module containing the given object name."""
|
294 |
+
module, _ = get_module_from_obj_name(obj_name)
|
295 |
+
return os.path.dirname(inspect.getfile(module))
|
296 |
+
|
297 |
+
|
298 |
+
def is_top_level_function(obj: Any) -> bool:
|
299 |
+
"""Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'."""
|
300 |
+
return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__
|
301 |
+
|
302 |
+
|
303 |
+
def get_top_level_function_name(obj: Any) -> str:
|
304 |
+
"""Return the fully-qualified name of a top-level function."""
|
305 |
+
assert is_top_level_function(obj)
|
306 |
+
module = obj.__module__
|
307 |
+
if module == '__main__':
|
308 |
+
module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0]
|
309 |
+
return module + "." + obj.__name__
|
310 |
+
|
311 |
+
|
312 |
+
# File system helpers
|
313 |
+
# ------------------------------------------------------------------------------------------
|
314 |
+
|
315 |
+
def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]:
|
316 |
+
"""List all files recursively in a given directory while ignoring given file and directory names.
|
317 |
+
Returns list of tuples containing both absolute and relative paths."""
|
318 |
+
assert os.path.isdir(dir_path)
|
319 |
+
base_name = os.path.basename(os.path.normpath(dir_path))
|
320 |
+
|
321 |
+
if ignores is None:
|
322 |
+
ignores = []
|
323 |
+
|
324 |
+
result = []
|
325 |
+
|
326 |
+
for root, dirs, files in os.walk(dir_path, topdown=True):
|
327 |
+
for ignore_ in ignores:
|
328 |
+
dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)]
|
329 |
+
|
330 |
+
# dirs need to be edited in-place
|
331 |
+
for d in dirs_to_remove:
|
332 |
+
dirs.remove(d)
|
333 |
+
|
334 |
+
files = [f for f in files if not fnmatch.fnmatch(f, ignore_)]
|
335 |
+
|
336 |
+
absolute_paths = [os.path.join(root, f) for f in files]
|
337 |
+
relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths]
|
338 |
+
|
339 |
+
if add_base_to_relative:
|
340 |
+
relative_paths = [os.path.join(base_name, p) for p in relative_paths]
|
341 |
+
|
342 |
+
assert len(absolute_paths) == len(relative_paths)
|
343 |
+
result += zip(absolute_paths, relative_paths)
|
344 |
+
|
345 |
+
return result
|
346 |
+
|
347 |
+
|
348 |
+
def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None:
|
349 |
+
"""Takes in a list of tuples of (src, dst) paths and copies files.
|
350 |
+
Will create all necessary directories."""
|
351 |
+
for file in files:
|
352 |
+
target_dir_name = os.path.dirname(file[1])
|
353 |
+
|
354 |
+
# will create all intermediate-level directories
|
355 |
+
if not os.path.exists(target_dir_name):
|
356 |
+
os.makedirs(target_dir_name)
|
357 |
+
|
358 |
+
shutil.copyfile(file[0], file[1])
|
359 |
+
|
360 |
+
|
361 |
+
# URL helpers
|
362 |
+
# ------------------------------------------------------------------------------------------
|
363 |
+
|
364 |
+
def is_url(obj: Any, allow_file_urls: bool = False) -> bool:
|
365 |
+
"""Determine whether the given object is a valid URL string."""
|
366 |
+
if not isinstance(obj, str) or not "://" in obj:
|
367 |
+
return False
|
368 |
+
if allow_file_urls and obj.startswith('file://'):
|
369 |
+
return True
|
370 |
+
try:
|
371 |
+
res = requests.compat.urlparse(obj)
|
372 |
+
if not res.scheme or not res.netloc or not "." in res.netloc:
|
373 |
+
return False
|
374 |
+
res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
|
375 |
+
if not res.scheme or not res.netloc or not "." in res.netloc:
|
376 |
+
return False
|
377 |
+
except:
|
378 |
+
return False
|
379 |
+
return True
|
380 |
+
|
381 |
+
|
382 |
+
def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any:
|
383 |
+
"""Download the given URL and return a binary-mode file object to access the data."""
|
384 |
+
assert num_attempts >= 1
|
385 |
+
assert not (return_filename and (not cache))
|
386 |
+
|
387 |
+
# Doesn't look like an URL scheme so interpret it as a local filename.
|
388 |
+
if not re.match('^[a-z]+://', url):
|
389 |
+
return url if return_filename else open(url, "rb")
|
390 |
+
|
391 |
+
# Handle file URLs. This code handles unusual file:// patterns that
|
392 |
+
# arise on Windows:
|
393 |
+
#
|
394 |
+
# file:///c:/foo.txt
|
395 |
+
#
|
396 |
+
# which would translate to a local '/c:/foo.txt' filename that's
|
397 |
+
# invalid. Drop the forward slash for such pathnames.
|
398 |
+
#
|
399 |
+
# If you touch this code path, you should test it on both Linux and
|
400 |
+
# Windows.
|
401 |
+
#
|
402 |
+
# Some internet resources suggest using urllib.request.url2pathname() but
|
403 |
+
# but that converts forward slashes to backslashes and this causes
|
404 |
+
# its own set of problems.
|
405 |
+
if url.startswith('file://'):
|
406 |
+
filename = urllib.parse.urlparse(url).path
|
407 |
+
if re.match(r'^/[a-zA-Z]:', filename):
|
408 |
+
filename = filename[1:]
|
409 |
+
return filename if return_filename else open(filename, "rb")
|
410 |
+
|
411 |
+
assert is_url(url)
|
412 |
+
|
413 |
+
# Lookup from cache.
|
414 |
+
if cache_dir is None:
|
415 |
+
cache_dir = make_cache_dir_path('downloads')
|
416 |
+
|
417 |
+
url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
|
418 |
+
if cache:
|
419 |
+
cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
|
420 |
+
if len(cache_files) == 1:
|
421 |
+
filename = cache_files[0]
|
422 |
+
return filename if return_filename else open(filename, "rb")
|
423 |
+
|
424 |
+
# Download.
|
425 |
+
url_name = None
|
426 |
+
url_data = None
|
427 |
+
with requests.Session() as session:
|
428 |
+
if verbose:
|
429 |
+
print("Downloading %s ..." % url, end="", flush=True)
|
430 |
+
for attempts_left in reversed(range(num_attempts)):
|
431 |
+
try:
|
432 |
+
with session.get(url) as res:
|
433 |
+
res.raise_for_status()
|
434 |
+
if len(res.content) == 0:
|
435 |
+
raise IOError("No data received")
|
436 |
+
|
437 |
+
if len(res.content) < 8192:
|
438 |
+
content_str = res.content.decode("utf-8")
|
439 |
+
if "download_warning" in res.headers.get("Set-Cookie", ""):
|
440 |
+
links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
|
441 |
+
if len(links) == 1:
|
442 |
+
url = requests.compat.urljoin(url, links[0])
|
443 |
+
raise IOError("Google Drive virus checker nag")
|
444 |
+
if "Google Drive - Quota exceeded" in content_str:
|
445 |
+
raise IOError("Google Drive download quota exceeded -- please try again later")
|
446 |
+
|
447 |
+
match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
|
448 |
+
url_name = match[1] if match else url
|
449 |
+
url_data = res.content
|
450 |
+
if verbose:
|
451 |
+
print(" done")
|
452 |
+
break
|
453 |
+
except KeyboardInterrupt:
|
454 |
+
raise
|
455 |
+
except:
|
456 |
+
if not attempts_left:
|
457 |
+
if verbose:
|
458 |
+
print(" failed")
|
459 |
+
raise
|
460 |
+
if verbose:
|
461 |
+
print(".", end="", flush=True)
|
462 |
+
|
463 |
+
# Save to cache.
|
464 |
+
if cache:
|
465 |
+
safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
|
466 |
+
cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
|
467 |
+
temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
|
468 |
+
os.makedirs(cache_dir, exist_ok=True)
|
469 |
+
with open(temp_file, "wb") as f:
|
470 |
+
f.write(url_data)
|
471 |
+
os.replace(temp_file, cache_file) # atomic
|
472 |
+
if return_filename:
|
473 |
+
return cache_file
|
474 |
+
|
475 |
+
# Return data as file object.
|
476 |
+
assert not return_filename
|
477 |
+
return io.BytesIO(url_data)
|
legacy.py
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import click
|
10 |
+
import pickle
|
11 |
+
import re
|
12 |
+
import copy
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
import dnnlib
|
16 |
+
from torch_utils import misc
|
17 |
+
|
18 |
+
# ----------------------------------------------------------------------------
|
19 |
+
|
20 |
+
|
21 |
+
def load_network_pkl(f, force_fp16=False):
|
22 |
+
data = _LegacyUnpickler(f).load()
|
23 |
+
|
24 |
+
# Legacy TensorFlow pickle => convert.
|
25 |
+
if (
|
26 |
+
isinstance(data, tuple)
|
27 |
+
and len(data) == 3
|
28 |
+
and all(isinstance(net, _TFNetworkStub) for net in data)
|
29 |
+
):
|
30 |
+
tf_G, tf_D, tf_Gs = data
|
31 |
+
G = convert_tf_generator(tf_G)
|
32 |
+
D = convert_tf_discriminator(tf_D)
|
33 |
+
G_ema = convert_tf_generator(tf_Gs)
|
34 |
+
data = dict(G=G, D=D, G_ema=G_ema)
|
35 |
+
|
36 |
+
# Add missing fields.
|
37 |
+
if "training_set_kwargs" not in data:
|
38 |
+
data["training_set_kwargs"] = None
|
39 |
+
if "augment_pipe" not in data:
|
40 |
+
data["augment_pipe"] = None
|
41 |
+
|
42 |
+
# Validate contents.
|
43 |
+
assert isinstance(data["G"], torch.nn.Module)
|
44 |
+
assert isinstance(data["D"], torch.nn.Module)
|
45 |
+
assert isinstance(data["G_ema"], torch.nn.Module)
|
46 |
+
assert isinstance(data["training_set_kwargs"], (dict, type(None)))
|
47 |
+
assert isinstance(data["augment_pipe"], (torch.nn.Module, type(None)))
|
48 |
+
|
49 |
+
# Force FP16.
|
50 |
+
if force_fp16:
|
51 |
+
for key in ["G", "D", "G_ema"]:
|
52 |
+
old = data[key]
|
53 |
+
kwargs = copy.deepcopy(old.init_kwargs)
|
54 |
+
if key.startswith("G"):
|
55 |
+
kwargs.synthesis_kwargs = dnnlib.EasyDict(
|
56 |
+
kwargs.get("synthesis_kwargs", {})
|
57 |
+
)
|
58 |
+
kwargs.synthesis_kwargs.num_fp16_res = 4
|
59 |
+
kwargs.synthesis_kwargs.conv_clamp = 256
|
60 |
+
if key.startswith("D"):
|
61 |
+
kwargs.num_fp16_res = 4
|
62 |
+
kwargs.conv_clamp = 256
|
63 |
+
if kwargs != old.init_kwargs:
|
64 |
+
new = type(old)(**kwargs).eval().requires_grad_(False)
|
65 |
+
misc.copy_params_and_buffers(old, new, require_all=True)
|
66 |
+
data[key] = new
|
67 |
+
return data
|
68 |
+
|
69 |
+
|
70 |
+
# ----------------------------------------------------------------------------
|
71 |
+
|
72 |
+
|
73 |
+
class _TFNetworkStub(dnnlib.EasyDict):
|
74 |
+
pass
|
75 |
+
|
76 |
+
|
77 |
+
class _LegacyUnpickler(pickle.Unpickler):
|
78 |
+
def find_class(self, module, name):
|
79 |
+
if module == "dnnlib.tflib.network" and name == "Network":
|
80 |
+
return _TFNetworkStub
|
81 |
+
return super().find_class(module, name)
|
82 |
+
|
83 |
+
|
84 |
+
# ----------------------------------------------------------------------------
|
85 |
+
|
86 |
+
|
87 |
+
def _collect_tf_params(tf_net):
|
88 |
+
# pylint: disable=protected-access
|
89 |
+
tf_params = dict()
|
90 |
+
|
91 |
+
def recurse(prefix, tf_net):
|
92 |
+
for name, value in tf_net.variables:
|
93 |
+
tf_params[prefix + name] = value
|
94 |
+
for name, comp in tf_net.components.items():
|
95 |
+
recurse(prefix + name + "/", comp)
|
96 |
+
|
97 |
+
recurse("", tf_net)
|
98 |
+
return tf_params
|
99 |
+
|
100 |
+
|
101 |
+
# ----------------------------------------------------------------------------
|
102 |
+
|
103 |
+
|
104 |
+
def _populate_module_params(module, *patterns):
|
105 |
+
for name, tensor in misc.named_params_and_buffers(module):
|
106 |
+
found = False
|
107 |
+
value = None
|
108 |
+
for pattern, value_fn in zip(patterns[0::2], patterns[1::2]):
|
109 |
+
match = re.fullmatch(pattern, name)
|
110 |
+
if match:
|
111 |
+
found = True
|
112 |
+
if value_fn is not None:
|
113 |
+
value = value_fn(*match.groups())
|
114 |
+
break
|
115 |
+
try:
|
116 |
+
assert found
|
117 |
+
if value is not None:
|
118 |
+
tensor.copy_(torch.from_numpy(np.array(value)))
|
119 |
+
except:
|
120 |
+
print(name, list(tensor.shape))
|
121 |
+
raise
|
122 |
+
|
123 |
+
|
124 |
+
# ----------------------------------------------------------------------------
|
125 |
+
|
126 |
+
|
127 |
+
def convert_tf_generator(tf_G):
|
128 |
+
if tf_G.version < 4:
|
129 |
+
raise ValueError("TensorFlow pickle version too low")
|
130 |
+
|
131 |
+
# Collect kwargs.
|
132 |
+
tf_kwargs = tf_G.static_kwargs
|
133 |
+
known_kwargs = set()
|
134 |
+
|
135 |
+
def kwarg(tf_name, default=None, none=None):
|
136 |
+
known_kwargs.add(tf_name)
|
137 |
+
val = tf_kwargs.get(tf_name, default)
|
138 |
+
return val if val is not None else none
|
139 |
+
|
140 |
+
# Convert kwargs.
|
141 |
+
kwargs = dnnlib.EasyDict(
|
142 |
+
z_dim=kwarg("latent_size", 512),
|
143 |
+
c_dim=kwarg("label_size", 0),
|
144 |
+
w_dim=kwarg("dlatent_size", 512),
|
145 |
+
img_resolution=kwarg("resolution", 1024),
|
146 |
+
img_channels=kwarg("num_channels", 3),
|
147 |
+
mapping_kwargs=dnnlib.EasyDict(
|
148 |
+
num_layers=kwarg("mapping_layers", 8),
|
149 |
+
embed_features=kwarg("label_fmaps", None),
|
150 |
+
layer_features=kwarg("mapping_fmaps", None),
|
151 |
+
activation=kwarg("mapping_nonlinearity", "lrelu"),
|
152 |
+
lr_multiplier=kwarg("mapping_lrmul", 0.01),
|
153 |
+
w_avg_beta=kwarg("w_avg_beta", 0.995, none=1),
|
154 |
+
),
|
155 |
+
synthesis_kwargs=dnnlib.EasyDict(
|
156 |
+
channel_base=kwarg("fmap_base", 16384) * 2,
|
157 |
+
channel_max=kwarg("fmap_max", 512),
|
158 |
+
num_fp16_res=kwarg("num_fp16_res", 0),
|
159 |
+
conv_clamp=kwarg("conv_clamp", None),
|
160 |
+
architecture=kwarg("architecture", "skip"),
|
161 |
+
resample_filter=kwarg("resample_kernel", [1, 3, 3, 1]),
|
162 |
+
use_noise=kwarg("use_noise", True),
|
163 |
+
activation=kwarg("nonlinearity", "lrelu"),
|
164 |
+
),
|
165 |
+
)
|
166 |
+
|
167 |
+
# Check for unknown kwargs.
|
168 |
+
kwarg("truncation_psi")
|
169 |
+
kwarg("truncation_cutoff")
|
170 |
+
kwarg("style_mixing_prob")
|
171 |
+
kwarg("structure")
|
172 |
+
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
|
173 |
+
if len(unknown_kwargs) > 0:
|
174 |
+
raise ValueError("Unknown TensorFlow kwarg", unknown_kwargs[0])
|
175 |
+
|
176 |
+
# Collect params.
|
177 |
+
tf_params = _collect_tf_params(tf_G)
|
178 |
+
for name, value in list(tf_params.items()):
|
179 |
+
match = re.fullmatch(r"ToRGB_lod(\d+)/(.*)", name)
|
180 |
+
if match:
|
181 |
+
r = kwargs.img_resolution // (2 ** int(match.group(1)))
|
182 |
+
tf_params[f"{r}x{r}/ToRGB/{match.group(2)}"] = value
|
183 |
+
kwargs.synthesis.kwargs.architecture = "orig"
|
184 |
+
# for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}')
|
185 |
+
|
186 |
+
# Convert params.
|
187 |
+
from training import networks
|
188 |
+
|
189 |
+
G = networks.Generator(**kwargs).eval().requires_grad_(False)
|
190 |
+
# pylint: disable=unnecessary-lambda
|
191 |
+
_populate_module_params(
|
192 |
+
G,
|
193 |
+
r"mapping\.w_avg",
|
194 |
+
lambda: tf_params[f"dlatent_avg"],
|
195 |
+
r"mapping\.embed\.weight",
|
196 |
+
lambda: tf_params[f"mapping/LabelEmbed/weight"].transpose(),
|
197 |
+
r"mapping\.embed\.bias",
|
198 |
+
lambda: tf_params[f"mapping/LabelEmbed/bias"],
|
199 |
+
r"mapping\.fc(\d+)\.weight",
|
200 |
+
lambda i: tf_params[f"mapping/Dense{i}/weight"].transpose(),
|
201 |
+
r"mapping\.fc(\d+)\.bias",
|
202 |
+
lambda i: tf_params[f"mapping/Dense{i}/bias"],
|
203 |
+
r"synthesis\.b4\.const",
|
204 |
+
lambda: tf_params[f"synthesis/4x4/Const/const"][0],
|
205 |
+
r"synthesis\.b4\.conv1\.weight",
|
206 |
+
lambda: tf_params[f"synthesis/4x4/Conv/weight"].transpose(3, 2, 0, 1),
|
207 |
+
r"synthesis\.b4\.conv1\.bias",
|
208 |
+
lambda: tf_params[f"synthesis/4x4/Conv/bias"],
|
209 |
+
r"synthesis\.b4\.conv1\.noise_const",
|
210 |
+
lambda: tf_params[f"synthesis/noise0"][0, 0],
|
211 |
+
r"synthesis\.b4\.conv1\.noise_strength",
|
212 |
+
lambda: tf_params[f"synthesis/4x4/Conv/noise_strength"],
|
213 |
+
r"synthesis\.b4\.conv1\.affine\.weight",
|
214 |
+
lambda: tf_params[f"synthesis/4x4/Conv/mod_weight"].transpose(),
|
215 |
+
r"synthesis\.b4\.conv1\.affine\.bias",
|
216 |
+
lambda: tf_params[f"synthesis/4x4/Conv/mod_bias"] + 1,
|
217 |
+
r"synthesis\.b(\d+)\.conv0\.weight",
|
218 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/weight"][::-1, ::-1].transpose(
|
219 |
+
3, 2, 0, 1
|
220 |
+
),
|
221 |
+
r"synthesis\.b(\d+)\.conv0\.bias",
|
222 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/bias"],
|
223 |
+
r"synthesis\.b(\d+)\.conv0\.noise_const",
|
224 |
+
lambda r: tf_params[f"synthesis/noise{int(np.log2(int(r)))*2-5}"][0, 0],
|
225 |
+
r"synthesis\.b(\d+)\.conv0\.noise_strength",
|
226 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/noise_strength"],
|
227 |
+
r"synthesis\.b(\d+)\.conv0\.affine\.weight",
|
228 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/mod_weight"].transpose(),
|
229 |
+
r"synthesis\.b(\d+)\.conv0\.affine\.bias",
|
230 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/mod_bias"] + 1,
|
231 |
+
r"synthesis\.b(\d+)\.conv1\.weight",
|
232 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/weight"].transpose(3, 2, 0, 1),
|
233 |
+
r"synthesis\.b(\d+)\.conv1\.bias",
|
234 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/bias"],
|
235 |
+
r"synthesis\.b(\d+)\.conv1\.noise_const",
|
236 |
+
lambda r: tf_params[f"synthesis/noise{int(np.log2(int(r)))*2-4}"][0, 0],
|
237 |
+
r"synthesis\.b(\d+)\.conv1\.noise_strength",
|
238 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/noise_strength"],
|
239 |
+
r"synthesis\.b(\d+)\.conv1\.affine\.weight",
|
240 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/mod_weight"].transpose(),
|
241 |
+
r"synthesis\.b(\d+)\.conv1\.affine\.bias",
|
242 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/mod_bias"] + 1,
|
243 |
+
r"synthesis\.b(\d+)\.torgb\.weight",
|
244 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/weight"].transpose(3, 2, 0, 1),
|
245 |
+
r"synthesis\.b(\d+)\.torgb\.bias",
|
246 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/bias"],
|
247 |
+
r"synthesis\.b(\d+)\.torgb\.affine\.weight",
|
248 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/mod_weight"].transpose(),
|
249 |
+
r"synthesis\.b(\d+)\.torgb\.affine\.bias",
|
250 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/mod_bias"] + 1,
|
251 |
+
r"synthesis\.b(\d+)\.skip\.weight",
|
252 |
+
lambda r: tf_params[f"synthesis/{r}x{r}/Skip/weight"][::-1, ::-1].transpose(
|
253 |
+
3, 2, 0, 1
|
254 |
+
),
|
255 |
+
r".*\.resample_filter",
|
256 |
+
None,
|
257 |
+
)
|
258 |
+
return G
|
259 |
+
|
260 |
+
|
261 |
+
# ----------------------------------------------------------------------------
|
262 |
+
|
263 |
+
|
264 |
+
def convert_tf_discriminator(tf_D):
|
265 |
+
if tf_D.version < 4:
|
266 |
+
raise ValueError("TensorFlow pickle version too low")
|
267 |
+
|
268 |
+
# Collect kwargs.
|
269 |
+
tf_kwargs = tf_D.static_kwargs
|
270 |
+
known_kwargs = set()
|
271 |
+
|
272 |
+
def kwarg(tf_name, default=None):
|
273 |
+
known_kwargs.add(tf_name)
|
274 |
+
return tf_kwargs.get(tf_name, default)
|
275 |
+
|
276 |
+
# Convert kwargs.
|
277 |
+
kwargs = dnnlib.EasyDict(
|
278 |
+
c_dim=kwarg("label_size", 0),
|
279 |
+
img_resolution=kwarg("resolution", 1024),
|
280 |
+
img_channels=kwarg("num_channels", 3),
|
281 |
+
architecture=kwarg("architecture", "resnet"),
|
282 |
+
channel_base=kwarg("fmap_base", 16384) * 2,
|
283 |
+
channel_max=kwarg("fmap_max", 512),
|
284 |
+
num_fp16_res=kwarg("num_fp16_res", 0),
|
285 |
+
conv_clamp=kwarg("conv_clamp", None),
|
286 |
+
cmap_dim=kwarg("mapping_fmaps", None),
|
287 |
+
block_kwargs=dnnlib.EasyDict(
|
288 |
+
activation=kwarg("nonlinearity", "lrelu"),
|
289 |
+
resample_filter=kwarg("resample_kernel", [1, 3, 3, 1]),
|
290 |
+
freeze_layers=kwarg("freeze_layers", 0),
|
291 |
+
),
|
292 |
+
mapping_kwargs=dnnlib.EasyDict(
|
293 |
+
num_layers=kwarg("mapping_layers", 0),
|
294 |
+
embed_features=kwarg("mapping_fmaps", None),
|
295 |
+
layer_features=kwarg("mapping_fmaps", None),
|
296 |
+
activation=kwarg("nonlinearity", "lrelu"),
|
297 |
+
lr_multiplier=kwarg("mapping_lrmul", 0.1),
|
298 |
+
),
|
299 |
+
epilogue_kwargs=dnnlib.EasyDict(
|
300 |
+
mbstd_group_size=kwarg("mbstd_group_size", None),
|
301 |
+
mbstd_num_channels=kwarg("mbstd_num_features", 1),
|
302 |
+
activation=kwarg("nonlinearity", "lrelu"),
|
303 |
+
),
|
304 |
+
)
|
305 |
+
|
306 |
+
# Check for unknown kwargs.
|
307 |
+
kwarg("structure")
|
308 |
+
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
|
309 |
+
if len(unknown_kwargs) > 0:
|
310 |
+
raise ValueError("Unknown TensorFlow kwarg", unknown_kwargs[0])
|
311 |
+
|
312 |
+
# Collect params.
|
313 |
+
tf_params = _collect_tf_params(tf_D)
|
314 |
+
for name, value in list(tf_params.items()):
|
315 |
+
match = re.fullmatch(r"FromRGB_lod(\d+)/(.*)", name)
|
316 |
+
if match:
|
317 |
+
r = kwargs.img_resolution // (2 ** int(match.group(1)))
|
318 |
+
tf_params[f"{r}x{r}/FromRGB/{match.group(2)}"] = value
|
319 |
+
kwargs.architecture = "orig"
|
320 |
+
# for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}')
|
321 |
+
|
322 |
+
# Convert params.
|
323 |
+
from training import networks
|
324 |
+
|
325 |
+
D = networks.Discriminator(**kwargs).eval().requires_grad_(False)
|
326 |
+
# pylint: disable=unnecessary-lambda
|
327 |
+
_populate_module_params(
|
328 |
+
D,
|
329 |
+
r"b(\d+)\.fromrgb\.weight",
|
330 |
+
lambda r: tf_params[f"{r}x{r}/FromRGB/weight"].transpose(3, 2, 0, 1),
|
331 |
+
r"b(\d+)\.fromrgb\.bias",
|
332 |
+
lambda r: tf_params[f"{r}x{r}/FromRGB/bias"],
|
333 |
+
r"b(\d+)\.conv(\d+)\.weight",
|
334 |
+
lambda r, i: tf_params[
|
335 |
+
f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/weight'
|
336 |
+
].transpose(3, 2, 0, 1),
|
337 |
+
r"b(\d+)\.conv(\d+)\.bias",
|
338 |
+
lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/bias'],
|
339 |
+
r"b(\d+)\.skip\.weight",
|
340 |
+
lambda r: tf_params[f"{r}x{r}/Skip/weight"].transpose(3, 2, 0, 1),
|
341 |
+
r"mapping\.embed\.weight",
|
342 |
+
lambda: tf_params[f"LabelEmbed/weight"].transpose(),
|
343 |
+
r"mapping\.embed\.bias",
|
344 |
+
lambda: tf_params[f"LabelEmbed/bias"],
|
345 |
+
r"mapping\.fc(\d+)\.weight",
|
346 |
+
lambda i: tf_params[f"Mapping{i}/weight"].transpose(),
|
347 |
+
r"mapping\.fc(\d+)\.bias",
|
348 |
+
lambda i: tf_params[f"Mapping{i}/bias"],
|
349 |
+
r"b4\.conv\.weight",
|
350 |
+
lambda: tf_params[f"4x4/Conv/weight"].transpose(3, 2, 0, 1),
|
351 |
+
r"b4\.conv\.bias",
|
352 |
+
lambda: tf_params[f"4x4/Conv/bias"],
|
353 |
+
r"b4\.fc\.weight",
|
354 |
+
lambda: tf_params[f"4x4/Dense0/weight"].transpose(),
|
355 |
+
r"b4\.fc\.bias",
|
356 |
+
lambda: tf_params[f"4x4/Dense0/bias"],
|
357 |
+
r"b4\.out\.weight",
|
358 |
+
lambda: tf_params[f"Output/weight"].transpose(),
|
359 |
+
r"b4\.out\.bias",
|
360 |
+
lambda: tf_params[f"Output/bias"],
|
361 |
+
r".*\.resample_filter",
|
362 |
+
None,
|
363 |
+
)
|
364 |
+
return D
|
365 |
+
|
366 |
+
|
367 |
+
# ----------------------------------------------------------------------------
|
368 |
+
|
369 |
+
|
370 |
+
@click.command()
|
371 |
+
@click.option("--source", help="Input pickle", required=True, metavar="PATH")
|
372 |
+
@click.option("--dest", help="Output pickle", required=True, metavar="PATH")
|
373 |
+
@click.option(
|
374 |
+
"--force-fp16",
|
375 |
+
help="Force the networks to use FP16",
|
376 |
+
type=bool,
|
377 |
+
default=False,
|
378 |
+
metavar="BOOL",
|
379 |
+
show_default=True,
|
380 |
+
)
|
381 |
+
def convert_network_pickle(source, dest, force_fp16):
|
382 |
+
"""Convert legacy network pickle into the native PyTorch format.
|
383 |
+
|
384 |
+
The tool is able to load the main network configurations exported using the TensorFlow version of StyleGAN2 or StyleGAN2-ADA.
|
385 |
+
It does not support e.g. StyleGAN2-ADA comparison methods, StyleGAN2 configs A-D, or StyleGAN1 networks.
|
386 |
+
|
387 |
+
Example:
|
388 |
+
|
389 |
+
\b
|
390 |
+
python legacy.py \\
|
391 |
+
--source=https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/stylegan2-cat-config-f.pkl \\
|
392 |
+
--dest=stylegan2-cat-config-f.pkl
|
393 |
+
"""
|
394 |
+
print(f'Loading "{source}"...')
|
395 |
+
with dnnlib.util.open_url(source) as f:
|
396 |
+
data = load_network_pkl(f, force_fp16=force_fp16)
|
397 |
+
print(f'Saving "{dest}"...')
|
398 |
+
with open(dest, "wb") as f:
|
399 |
+
pickle.dump(data, f)
|
400 |
+
print("Done.")
|
401 |
+
|
402 |
+
|
403 |
+
# ----------------------------------------------------------------------------
|
404 |
+
|
405 |
+
if __name__ == "__main__":
|
406 |
+
convert_network_pickle() # pylint: disable=no-value-for-parameter
|
407 |
+
|
408 |
+
# ----------------------------------------------------------------------------
|
torch_utils/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
# empty
|
torch_utils/__pycache__/__init__.cpython-36.pyc
ADDED
Binary file (156 Bytes). View file
|
|
torch_utils/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (164 Bytes). View file
|
|
torch_utils/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (164 Bytes). View file
|
|
torch_utils/__pycache__/custom_ops.cpython-36.pyc
ADDED
Binary file (3.2 kB). View file
|
|
torch_utils/__pycache__/custom_ops.cpython-38.pyc
ADDED
Binary file (3.22 kB). View file
|
|
torch_utils/__pycache__/custom_ops.cpython-39.pyc
ADDED
Binary file (3.21 kB). View file
|
|
torch_utils/__pycache__/misc.cpython-36.pyc
ADDED
Binary file (9.77 kB). View file
|
|
torch_utils/__pycache__/misc.cpython-38.pyc
ADDED
Binary file (9.9 kB). View file
|
|
torch_utils/__pycache__/misc.cpython-39.pyc
ADDED
Binary file (9.84 kB). View file
|
|
torch_utils/__pycache__/persistence.cpython-36.pyc
ADDED
Binary file (8.6 kB). View file
|
|
torch_utils/__pycache__/persistence.cpython-38.pyc
ADDED
Binary file (8.65 kB). View file
|
|
torch_utils/__pycache__/persistence.cpython-39.pyc
ADDED
Binary file (8.63 kB). View file
|
|
torch_utils/custom_ops.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import os
|
10 |
+
import glob
|
11 |
+
import torch
|
12 |
+
import torch.utils.cpp_extension
|
13 |
+
import importlib
|
14 |
+
import hashlib
|
15 |
+
import shutil
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
from torch.utils.file_baton import FileBaton
|
19 |
+
|
20 |
+
#----------------------------------------------------------------------------
|
21 |
+
# Global options.
|
22 |
+
|
23 |
+
verbosity = 'brief' # Verbosity level: 'none', 'brief', 'full'
|
24 |
+
|
25 |
+
#----------------------------------------------------------------------------
|
26 |
+
# Internal helper funcs.
|
27 |
+
|
28 |
+
def _find_compiler_bindir():
|
29 |
+
patterns = [
|
30 |
+
'C:/Program Files (x86)/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64',
|
31 |
+
'C:/Program Files (x86)/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64',
|
32 |
+
'C:/Program Files (x86)/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64',
|
33 |
+
'C:/Program Files (x86)/Microsoft Visual Studio */vc/bin',
|
34 |
+
]
|
35 |
+
for pattern in patterns:
|
36 |
+
matches = sorted(glob.glob(pattern))
|
37 |
+
if len(matches):
|
38 |
+
return matches[-1]
|
39 |
+
return None
|
40 |
+
|
41 |
+
#----------------------------------------------------------------------------
|
42 |
+
# Main entry point for compiling and loading C++/CUDA plugins.
|
43 |
+
|
44 |
+
_cached_plugins = dict()
|
45 |
+
|
46 |
+
def get_plugin(module_name, sources, **build_kwargs):
|
47 |
+
assert verbosity in ['none', 'brief', 'full']
|
48 |
+
|
49 |
+
# Already cached?
|
50 |
+
if module_name in _cached_plugins:
|
51 |
+
return _cached_plugins[module_name]
|
52 |
+
|
53 |
+
# Print status.
|
54 |
+
if verbosity == 'full':
|
55 |
+
print(f'Setting up PyTorch plugin "{module_name}"...')
|
56 |
+
elif verbosity == 'brief':
|
57 |
+
print(f'Setting up PyTorch plugin "{module_name}"... ', end='', flush=True)
|
58 |
+
|
59 |
+
try: # pylint: disable=too-many-nested-blocks
|
60 |
+
# Make sure we can find the necessary compiler binaries.
|
61 |
+
if os.name == 'nt' and os.system("where cl.exe >nul 2>nul") != 0:
|
62 |
+
compiler_bindir = _find_compiler_bindir()
|
63 |
+
if compiler_bindir is None:
|
64 |
+
raise RuntimeError(f'Could not find MSVC/GCC/CLANG installation on this computer. Check _find_compiler_bindir() in "{__file__}".')
|
65 |
+
os.environ['PATH'] += ';' + compiler_bindir
|
66 |
+
|
67 |
+
# Compile and load.
|
68 |
+
verbose_build = (verbosity == 'full')
|
69 |
+
|
70 |
+
# Incremental build md5sum trickery. Copies all the input source files
|
71 |
+
# into a cached build directory under a combined md5 digest of the input
|
72 |
+
# source files. Copying is done only if the combined digest has changed.
|
73 |
+
# This keeps input file timestamps and filenames the same as in previous
|
74 |
+
# extension builds, allowing for fast incremental rebuilds.
|
75 |
+
#
|
76 |
+
# This optimization is done only in case all the source files reside in
|
77 |
+
# a single directory (just for simplicity) and if the TORCH_EXTENSIONS_DIR
|
78 |
+
# environment variable is set (we take this as a signal that the user
|
79 |
+
# actually cares about this.)
|
80 |
+
source_dirs_set = set(os.path.dirname(source) for source in sources)
|
81 |
+
if len(source_dirs_set) == 1 and ('TORCH_EXTENSIONS_DIR' in os.environ):
|
82 |
+
all_source_files = sorted(list(x for x in Path(list(source_dirs_set)[0]).iterdir() if x.is_file()))
|
83 |
+
|
84 |
+
# Compute a combined hash digest for all source files in the same
|
85 |
+
# custom op directory (usually .cu, .cpp, .py and .h files).
|
86 |
+
hash_md5 = hashlib.md5()
|
87 |
+
for src in all_source_files:
|
88 |
+
with open(src, 'rb') as f:
|
89 |
+
hash_md5.update(f.read())
|
90 |
+
build_dir = torch.utils.cpp_extension._get_build_directory(module_name, verbose=verbose_build) # pylint: disable=protected-access
|
91 |
+
digest_build_dir = os.path.join(build_dir, hash_md5.hexdigest())
|
92 |
+
|
93 |
+
if not os.path.isdir(digest_build_dir):
|
94 |
+
os.makedirs(digest_build_dir, exist_ok=True)
|
95 |
+
baton = FileBaton(os.path.join(digest_build_dir, 'lock'))
|
96 |
+
if baton.try_acquire():
|
97 |
+
try:
|
98 |
+
for src in all_source_files:
|
99 |
+
shutil.copyfile(src, os.path.join(digest_build_dir, os.path.basename(src)))
|
100 |
+
finally:
|
101 |
+
baton.release()
|
102 |
+
else:
|
103 |
+
# Someone else is copying source files under the digest dir,
|
104 |
+
# wait until done and continue.
|
105 |
+
baton.wait()
|
106 |
+
digest_sources = [os.path.join(digest_build_dir, os.path.basename(x)) for x in sources]
|
107 |
+
torch.utils.cpp_extension.load(name=module_name, build_directory=build_dir,
|
108 |
+
verbose=verbose_build, sources=digest_sources, **build_kwargs)
|
109 |
+
else:
|
110 |
+
torch.utils.cpp_extension.load(name=module_name, verbose=verbose_build, sources=sources, **build_kwargs)
|
111 |
+
module = importlib.import_module(module_name)
|
112 |
+
|
113 |
+
except:
|
114 |
+
if verbosity == 'brief':
|
115 |
+
print('Failed!')
|
116 |
+
raise
|
117 |
+
|
118 |
+
# Print status and add to cache.
|
119 |
+
if verbosity == 'full':
|
120 |
+
print(f'Done setting up PyTorch plugin "{module_name}".')
|
121 |
+
elif verbosity == 'brief':
|
122 |
+
print('Done.')
|
123 |
+
_cached_plugins[module_name] = module
|
124 |
+
return module
|
125 |
+
|
126 |
+
#----------------------------------------------------------------------------
|
torch_utils/misc.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import re
|
10 |
+
import contextlib
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import warnings
|
14 |
+
import dnnlib
|
15 |
+
|
16 |
+
# ----------------------------------------------------------------------------
|
17 |
+
# Cached construction of constant tensors. Avoids CPU=>GPU copy when the
|
18 |
+
# same constant is used multiple times.
|
19 |
+
|
20 |
+
_constant_cache = dict()
|
21 |
+
|
22 |
+
|
23 |
+
def constant(value, shape=None, dtype=None, device=None, memory_format=None):
|
24 |
+
value = np.asarray(value)
|
25 |
+
if shape is not None:
|
26 |
+
shape = tuple(shape)
|
27 |
+
if dtype is None:
|
28 |
+
dtype = torch.get_default_dtype()
|
29 |
+
if device is None:
|
30 |
+
device = torch.device("cpu")
|
31 |
+
if memory_format is None:
|
32 |
+
memory_format = torch.contiguous_format
|
33 |
+
|
34 |
+
key = (
|
35 |
+
value.shape,
|
36 |
+
value.dtype,
|
37 |
+
value.tobytes(),
|
38 |
+
shape,
|
39 |
+
dtype,
|
40 |
+
device,
|
41 |
+
memory_format,
|
42 |
+
)
|
43 |
+
tensor = _constant_cache.get(key, None)
|
44 |
+
if tensor is None:
|
45 |
+
tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
|
46 |
+
if shape is not None:
|
47 |
+
tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
|
48 |
+
tensor = tensor.contiguous(memory_format=memory_format)
|
49 |
+
_constant_cache[key] = tensor
|
50 |
+
return tensor
|
51 |
+
|
52 |
+
|
53 |
+
# ----------------------------------------------------------------------------
|
54 |
+
# Replace NaN/Inf with specified numerical values.
|
55 |
+
|
56 |
+
try:
|
57 |
+
nan_to_num = torch.nan_to_num # 1.8.0a0
|
58 |
+
except AttributeError:
|
59 |
+
|
60 |
+
def nan_to_num(
|
61 |
+
input, nan=0.0, posinf=None, neginf=None, *, out=None
|
62 |
+
): # pylint: disable=redefined-builtin
|
63 |
+
assert isinstance(input, torch.Tensor)
|
64 |
+
if posinf is None:
|
65 |
+
posinf = torch.finfo(input.dtype).max
|
66 |
+
if neginf is None:
|
67 |
+
neginf = torch.finfo(input.dtype).min
|
68 |
+
assert nan == 0
|
69 |
+
return torch.clamp(
|
70 |
+
input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out
|
71 |
+
)
|
72 |
+
|
73 |
+
|
74 |
+
# ----------------------------------------------------------------------------
|
75 |
+
# Symbolic assert.
|
76 |
+
|
77 |
+
try:
|
78 |
+
symbolic_assert = torch._assert # 1.8.0a0 # pylint: disable=protected-access
|
79 |
+
except AttributeError:
|
80 |
+
symbolic_assert = torch.Assert # 1.7.0
|
81 |
+
|
82 |
+
# ----------------------------------------------------------------------------
|
83 |
+
# Context manager to suppress known warnings in torch.jit.trace().
|
84 |
+
|
85 |
+
|
86 |
+
class suppress_tracer_warnings(warnings.catch_warnings):
|
87 |
+
def __enter__(self):
|
88 |
+
super().__enter__()
|
89 |
+
warnings.simplefilter("ignore", category=torch.jit.TracerWarning)
|
90 |
+
return self
|
91 |
+
|
92 |
+
|
93 |
+
# ----------------------------------------------------------------------------
|
94 |
+
# Assert that the shape of a tensor matches the given list of integers.
|
95 |
+
# None indicates that the size of a dimension is allowed to vary.
|
96 |
+
# Performs symbolic assertion when used in torch.jit.trace().
|
97 |
+
|
98 |
+
|
99 |
+
def assert_shape(tensor, ref_shape):
|
100 |
+
if tensor.ndim != len(ref_shape):
|
101 |
+
raise AssertionError(
|
102 |
+
f"Wrong number of dimensions: got {tensor.ndim}, expected {len(ref_shape)}"
|
103 |
+
)
|
104 |
+
for idx, (size, ref_size) in enumerate(zip(tensor.shape, ref_shape)):
|
105 |
+
if ref_size is None:
|
106 |
+
pass
|
107 |
+
elif isinstance(ref_size, torch.Tensor):
|
108 |
+
with suppress_tracer_warnings(): # as_tensor results are registered as constants
|
109 |
+
symbolic_assert(
|
110 |
+
torch.equal(torch.as_tensor(size), ref_size),
|
111 |
+
f"Wrong size for dimension {idx}",
|
112 |
+
)
|
113 |
+
elif isinstance(size, torch.Tensor):
|
114 |
+
with suppress_tracer_warnings(): # as_tensor results are registered as constants
|
115 |
+
symbolic_assert(
|
116 |
+
torch.equal(size, torch.as_tensor(ref_size)),
|
117 |
+
f"Wrong size for dimension {idx}: expected {ref_size}",
|
118 |
+
)
|
119 |
+
elif size != ref_size:
|
120 |
+
raise AssertionError(
|
121 |
+
f"Wrong size for dimension {idx}: got {size}, expected {ref_size}"
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
# ----------------------------------------------------------------------------
|
126 |
+
# Function decorator that calls torch.autograd.profiler.record_function().
|
127 |
+
|
128 |
+
|
129 |
+
def profiled_function(fn):
|
130 |
+
def decorator(*args, **kwargs):
|
131 |
+
with torch.autograd.profiler.record_function(fn.__name__):
|
132 |
+
return fn(*args, **kwargs)
|
133 |
+
|
134 |
+
decorator.__name__ = fn.__name__
|
135 |
+
return decorator
|
136 |
+
|
137 |
+
|
138 |
+
# ----------------------------------------------------------------------------
|
139 |
+
# Sampler for torch.utils.data.DataLoader that loops over the dataset
|
140 |
+
# indefinitely, shuffling items as it goes.
|
141 |
+
|
142 |
+
|
143 |
+
class InfiniteSampler(torch.utils.data.Sampler):
|
144 |
+
def __init__(
|
145 |
+
self, dataset, rank=0, num_replicas=1, shuffle=True, seed=0, window_size=0.5
|
146 |
+
):
|
147 |
+
assert len(dataset) > 0
|
148 |
+
assert num_replicas > 0
|
149 |
+
assert 0 <= rank < num_replicas
|
150 |
+
assert 0 <= window_size <= 1
|
151 |
+
super().__init__(dataset)
|
152 |
+
self.dataset = dataset
|
153 |
+
self.rank = rank
|
154 |
+
self.num_replicas = num_replicas
|
155 |
+
self.shuffle = shuffle
|
156 |
+
self.seed = seed
|
157 |
+
self.window_size = window_size
|
158 |
+
|
159 |
+
def __iter__(self):
|
160 |
+
order = np.arange(len(self.dataset))
|
161 |
+
rnd = None
|
162 |
+
window = 0
|
163 |
+
if self.shuffle:
|
164 |
+
rnd = np.random.RandomState(self.seed)
|
165 |
+
rnd.shuffle(order)
|
166 |
+
window = int(np.rint(order.size * self.window_size))
|
167 |
+
|
168 |
+
idx = 0
|
169 |
+
while True:
|
170 |
+
i = idx % order.size
|
171 |
+
if idx % self.num_replicas == self.rank:
|
172 |
+
yield order[i]
|
173 |
+
if window >= 2:
|
174 |
+
j = (i - rnd.randint(window)) % order.size
|
175 |
+
order[i], order[j] = order[j], order[i]
|
176 |
+
idx += 1
|
177 |
+
|
178 |
+
|
179 |
+
# ----------------------------------------------------------------------------
|
180 |
+
# Utilities for operating with torch.nn.Module parameters and buffers.
|
181 |
+
|
182 |
+
|
183 |
+
def params_and_buffers(module):
|
184 |
+
assert isinstance(module, torch.nn.Module)
|
185 |
+
return list(module.parameters()) + list(module.buffers())
|
186 |
+
|
187 |
+
|
188 |
+
def named_params_and_buffers(module):
|
189 |
+
assert isinstance(module, torch.nn.Module)
|
190 |
+
return list(module.named_parameters()) + list(module.named_buffers())
|
191 |
+
|
192 |
+
|
193 |
+
def copy_params_and_buffers(src_module, dst_module, require_all=False):
|
194 |
+
assert isinstance(src_module, torch.nn.Module)
|
195 |
+
assert isinstance(dst_module, torch.nn.Module)
|
196 |
+
src_tensors = {
|
197 |
+
name: tensor for name, tensor in named_params_and_buffers(src_module)
|
198 |
+
}
|
199 |
+
for name, tensor in named_params_and_buffers(dst_module):
|
200 |
+
assert (name in src_tensors) or (not require_all)
|
201 |
+
if name in src_tensors:
|
202 |
+
tensor.copy_(src_tensors[name].detach()).requires_grad_(
|
203 |
+
tensor.requires_grad
|
204 |
+
)
|
205 |
+
|
206 |
+
|
207 |
+
# ----------------------------------------------------------------------------
|
208 |
+
# Context manager for easily enabling/disabling DistributedDataParallel
|
209 |
+
# synchronization.
|
210 |
+
|
211 |
+
|
212 |
+
@contextlib.contextmanager
|
213 |
+
def ddp_sync(module, sync):
|
214 |
+
assert isinstance(module, torch.nn.Module)
|
215 |
+
if sync or not isinstance(module, torch.nn.parallel.DistributedDataParallel):
|
216 |
+
yield
|
217 |
+
else:
|
218 |
+
with module.no_sync():
|
219 |
+
yield
|
220 |
+
|
221 |
+
|
222 |
+
# ----------------------------------------------------------------------------
|
223 |
+
# Check DistributedDataParallel consistency across processes.
|
224 |
+
|
225 |
+
|
226 |
+
def check_ddp_consistency(module, ignore_regex=None):
|
227 |
+
assert isinstance(module, torch.nn.Module)
|
228 |
+
for name, tensor in named_params_and_buffers(module):
|
229 |
+
fullname = type(module).__name__ + "." + name
|
230 |
+
if ignore_regex is not None and re.fullmatch(ignore_regex, fullname):
|
231 |
+
continue
|
232 |
+
tensor = tensor.detach()
|
233 |
+
other = tensor.clone()
|
234 |
+
torch.distributed.broadcast(tensor=other, src=0)
|
235 |
+
assert (nan_to_num(tensor) == nan_to_num(other)).all(), fullname
|
236 |
+
|
237 |
+
|
238 |
+
# ----------------------------------------------------------------------------
|
239 |
+
# Print summary table of module hierarchy.
|
240 |
+
|
241 |
+
|
242 |
+
def print_module_summary(module, inputs, max_nesting=3, skip_redundant=True):
|
243 |
+
assert isinstance(module, torch.nn.Module)
|
244 |
+
assert not isinstance(module, torch.jit.ScriptModule)
|
245 |
+
assert isinstance(inputs, (tuple, list))
|
246 |
+
|
247 |
+
# Register hooks.
|
248 |
+
entries = []
|
249 |
+
nesting = [0]
|
250 |
+
|
251 |
+
def pre_hook(_mod, _inputs):
|
252 |
+
nesting[0] += 1
|
253 |
+
|
254 |
+
def post_hook(mod, _inputs, outputs):
|
255 |
+
nesting[0] -= 1
|
256 |
+
if nesting[0] <= max_nesting:
|
257 |
+
outputs = list(outputs) if isinstance(outputs, (tuple, list)) else [outputs]
|
258 |
+
outputs = [t for t in outputs if isinstance(t, torch.Tensor)]
|
259 |
+
entries.append(dnnlib.EasyDict(mod=mod, outputs=outputs))
|
260 |
+
|
261 |
+
hooks = [mod.register_forward_pre_hook(pre_hook) for mod in module.modules()]
|
262 |
+
hooks += [mod.register_forward_hook(post_hook) for mod in module.modules()]
|
263 |
+
|
264 |
+
# Run module.
|
265 |
+
outputs = module(*inputs)
|
266 |
+
for hook in hooks:
|
267 |
+
hook.remove()
|
268 |
+
|
269 |
+
# Identify unique outputs, parameters, and buffers.
|
270 |
+
tensors_seen = set()
|
271 |
+
for e in entries:
|
272 |
+
e.unique_params = [t for t in e.mod.parameters() if id(t) not in tensors_seen]
|
273 |
+
e.unique_buffers = [t for t in e.mod.buffers() if id(t) not in tensors_seen]
|
274 |
+
e.unique_outputs = [t for t in e.outputs if id(t) not in tensors_seen]
|
275 |
+
tensors_seen |= {
|
276 |
+
id(t) for t in e.unique_params + e.unique_buffers + e.unique_outputs
|
277 |
+
}
|
278 |
+
|
279 |
+
# Filter out redundant entries.
|
280 |
+
if skip_redundant:
|
281 |
+
entries = [
|
282 |
+
e
|
283 |
+
for e in entries
|
284 |
+
if len(e.unique_params) or len(e.unique_buffers) or len(e.unique_outputs)
|
285 |
+
]
|
286 |
+
|
287 |
+
# Construct table.
|
288 |
+
rows = [
|
289 |
+
[type(module).__name__, "Parameters", "Buffers", "Output shape", "Datatype"]
|
290 |
+
]
|
291 |
+
rows += [["---"] * len(rows[0])]
|
292 |
+
param_total = 0
|
293 |
+
buffer_total = 0
|
294 |
+
submodule_names = {mod: name for name, mod in module.named_modules()}
|
295 |
+
for e in entries:
|
296 |
+
name = "<top-level>" if e.mod is module else submodule_names[e.mod]
|
297 |
+
param_size = sum(t.numel() for t in e.unique_params)
|
298 |
+
buffer_size = sum(t.numel() for t in e.unique_buffers)
|
299 |
+
output_shapes = [str(list(e.outputs[0].shape)) for t in e.outputs]
|
300 |
+
output_dtypes = [str(t.dtype).split(".")[-1] for t in e.outputs]
|
301 |
+
rows += [
|
302 |
+
[
|
303 |
+
name + (":0" if len(e.outputs) >= 2 else ""),
|
304 |
+
str(param_size) if param_size else "-",
|
305 |
+
str(buffer_size) if buffer_size else "-",
|
306 |
+
(output_shapes + ["-"])[0],
|
307 |
+
(output_dtypes + ["-"])[0],
|
308 |
+
]
|
309 |
+
]
|
310 |
+
for idx in range(1, len(e.outputs)):
|
311 |
+
rows += [
|
312 |
+
[name + f":{idx}", "-", "-", output_shapes[idx], output_dtypes[idx]]
|
313 |
+
]
|
314 |
+
param_total += param_size
|
315 |
+
buffer_total += buffer_size
|
316 |
+
rows += [["---"] * len(rows[0])]
|
317 |
+
rows += [["Total", str(param_total), str(buffer_total), "-", "-"]]
|
318 |
+
|
319 |
+
# Print table.
|
320 |
+
widths = [max(len(cell) for cell in column) for column in zip(*rows)]
|
321 |
+
print()
|
322 |
+
for row in rows:
|
323 |
+
print(
|
324 |
+
" ".join(
|
325 |
+
cell + " " * (width - len(cell)) for cell, width in zip(row, widths)
|
326 |
+
)
|
327 |
+
)
|
328 |
+
print()
|
329 |
+
return outputs
|
330 |
+
|
331 |
+
|
332 |
+
# ----------------------------------------------------------------------------
|
torch_utils/ops/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
# empty
|
torch_utils/ops/__pycache__/__init__.cpython-36.pyc
ADDED
Binary file (160 Bytes). View file
|
|
torch_utils/ops/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (168 Bytes). View file
|
|
torch_utils/ops/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (168 Bytes). View file
|
|
torch_utils/ops/__pycache__/bias_act.cpython-36.pyc
ADDED
Binary file (8.73 kB). View file
|
|
torch_utils/ops/__pycache__/bias_act.cpython-38.pyc
ADDED
Binary file (8.7 kB). View file
|
|
torch_utils/ops/__pycache__/bias_act.cpython-39.pyc
ADDED
Binary file (8.65 kB). View file
|
|
torch_utils/ops/__pycache__/conv2d_gradfix.cpython-36.pyc
ADDED
Binary file (6.57 kB). View file
|
|
torch_utils/ops/__pycache__/conv2d_gradfix.cpython-38.pyc
ADDED
Binary file (6.5 kB). View file
|
|
torch_utils/ops/__pycache__/conv2d_gradfix.cpython-39.pyc
ADDED
Binary file (6.44 kB). View file
|
|
torch_utils/ops/__pycache__/conv2d_resample.cpython-36.pyc
ADDED
Binary file (4.77 kB). View file
|
|
torch_utils/ops/__pycache__/conv2d_resample.cpython-38.pyc
ADDED
Binary file (4.81 kB). View file
|
|
torch_utils/ops/__pycache__/conv2d_resample.cpython-39.pyc
ADDED
Binary file (4.81 kB). View file
|
|
torch_utils/ops/__pycache__/fma.cpython-36.pyc
ADDED
Binary file (1.71 kB). View file
|
|
torch_utils/ops/__pycache__/fma.cpython-38.pyc
ADDED
Binary file (1.74 kB). View file
|
|
torch_utils/ops/__pycache__/fma.cpython-39.pyc
ADDED
Binary file (1.71 kB). View file
|
|
torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-36.pyc
ADDED
Binary file (2.78 kB). View file
|
|
torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-38.pyc
ADDED
Binary file (2.77 kB). View file
|
|
torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-39.pyc
ADDED
Binary file (2.74 kB). View file
|
|
torch_utils/ops/__pycache__/upfirdn2d.cpython-36.pyc
ADDED
Binary file (14.5 kB). View file
|
|
torch_utils/ops/__pycache__/upfirdn2d.cpython-38.pyc
ADDED
Binary file (14.5 kB). View file
|
|
torch_utils/ops/__pycache__/upfirdn2d.cpython-39.pyc
ADDED
Binary file (14.4 kB). View file
|
|
torch_utils/ops/bias_act.cpp
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#include <torch/extension.h>
|
10 |
+
#include <ATen/cuda/CUDAContext.h>
|
11 |
+
#include <c10/cuda/CUDAGuard.h>
|
12 |
+
#include "bias_act.h"
|
13 |
+
|
14 |
+
//------------------------------------------------------------------------
|
15 |
+
|
16 |
+
static bool has_same_layout(torch::Tensor x, torch::Tensor y)
|
17 |
+
{
|
18 |
+
if (x.dim() != y.dim())
|
19 |
+
return false;
|
20 |
+
for (int64_t i = 0; i < x.dim(); i++)
|
21 |
+
{
|
22 |
+
if (x.size(i) != y.size(i))
|
23 |
+
return false;
|
24 |
+
if (x.size(i) >= 2 && x.stride(i) != y.stride(i))
|
25 |
+
return false;
|
26 |
+
}
|
27 |
+
return true;
|
28 |
+
}
|
29 |
+
|
30 |
+
//------------------------------------------------------------------------
|
31 |
+
|
32 |
+
static torch::Tensor bias_act(torch::Tensor x, torch::Tensor b, torch::Tensor xref, torch::Tensor yref, torch::Tensor dy, int grad, int dim, int act, float alpha, float gain, float clamp)
|
33 |
+
{
|
34 |
+
// Validate arguments.
|
35 |
+
TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
|
36 |
+
TORCH_CHECK(b.numel() == 0 || (b.dtype() == x.dtype() && b.device() == x.device()), "b must have the same dtype and device as x");
|
37 |
+
TORCH_CHECK(xref.numel() == 0 || (xref.sizes() == x.sizes() && xref.dtype() == x.dtype() && xref.device() == x.device()), "xref must have the same shape, dtype, and device as x");
|
38 |
+
TORCH_CHECK(yref.numel() == 0 || (yref.sizes() == x.sizes() && yref.dtype() == x.dtype() && yref.device() == x.device()), "yref must have the same shape, dtype, and device as x");
|
39 |
+
TORCH_CHECK(dy.numel() == 0 || (dy.sizes() == x.sizes() && dy.dtype() == x.dtype() && dy.device() == x.device()), "dy must have the same dtype and device as x");
|
40 |
+
TORCH_CHECK(x.numel() <= INT_MAX, "x is too large");
|
41 |
+
TORCH_CHECK(b.dim() == 1, "b must have rank 1");
|
42 |
+
TORCH_CHECK(b.numel() == 0 || (dim >= 0 && dim < x.dim()), "dim is out of bounds");
|
43 |
+
TORCH_CHECK(b.numel() == 0 || b.numel() == x.size(dim), "b has wrong number of elements");
|
44 |
+
TORCH_CHECK(grad >= 0, "grad must be non-negative");
|
45 |
+
|
46 |
+
// Validate layout.
|
47 |
+
TORCH_CHECK(x.is_non_overlapping_and_dense(), "x must be non-overlapping and dense");
|
48 |
+
TORCH_CHECK(b.is_contiguous(), "b must be contiguous");
|
49 |
+
TORCH_CHECK(xref.numel() == 0 || has_same_layout(xref, x), "xref must have the same layout as x");
|
50 |
+
TORCH_CHECK(yref.numel() == 0 || has_same_layout(yref, x), "yref must have the same layout as x");
|
51 |
+
TORCH_CHECK(dy.numel() == 0 || has_same_layout(dy, x), "dy must have the same layout as x");
|
52 |
+
|
53 |
+
// Create output tensor.
|
54 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
|
55 |
+
torch::Tensor y = torch::empty_like(x);
|
56 |
+
TORCH_CHECK(has_same_layout(y, x), "y must have the same layout as x");
|
57 |
+
|
58 |
+
// Initialize CUDA kernel parameters.
|
59 |
+
bias_act_kernel_params p;
|
60 |
+
p.x = x.data_ptr();
|
61 |
+
p.b = (b.numel()) ? b.data_ptr() : NULL;
|
62 |
+
p.xref = (xref.numel()) ? xref.data_ptr() : NULL;
|
63 |
+
p.yref = (yref.numel()) ? yref.data_ptr() : NULL;
|
64 |
+
p.dy = (dy.numel()) ? dy.data_ptr() : NULL;
|
65 |
+
p.y = y.data_ptr();
|
66 |
+
p.grad = grad;
|
67 |
+
p.act = act;
|
68 |
+
p.alpha = alpha;
|
69 |
+
p.gain = gain;
|
70 |
+
p.clamp = clamp;
|
71 |
+
p.sizeX = (int)x.numel();
|
72 |
+
p.sizeB = (int)b.numel();
|
73 |
+
p.stepB = (b.numel()) ? (int)x.stride(dim) : 1;
|
74 |
+
|
75 |
+
// Choose CUDA kernel.
|
76 |
+
void* kernel;
|
77 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&]
|
78 |
+
{
|
79 |
+
kernel = choose_bias_act_kernel<scalar_t>(p);
|
80 |
+
});
|
81 |
+
TORCH_CHECK(kernel, "no CUDA kernel found for the specified activation func");
|
82 |
+
|
83 |
+
// Launch CUDA kernel.
|
84 |
+
p.loopX = 4;
|
85 |
+
int blockSize = 4 * 32;
|
86 |
+
int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1;
|
87 |
+
void* args[] = {&p};
|
88 |
+
AT_CUDA_CHECK(cudaLaunchKernel(kernel, gridSize, blockSize, args, 0, at::cuda::getCurrentCUDAStream()));
|
89 |
+
return y;
|
90 |
+
}
|
91 |
+
|
92 |
+
//------------------------------------------------------------------------
|
93 |
+
|
94 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
95 |
+
{
|
96 |
+
m.def("bias_act", &bias_act);
|
97 |
+
}
|
98 |
+
|
99 |
+
//------------------------------------------------------------------------
|
torch_utils/ops/bias_act.cu
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#include <c10/util/Half.h>
|
10 |
+
#include "bias_act.h"
|
11 |
+
|
12 |
+
//------------------------------------------------------------------------
|
13 |
+
// Helpers.
|
14 |
+
|
15 |
+
template <class T> struct InternalType;
|
16 |
+
template <> struct InternalType<double> { typedef double scalar_t; };
|
17 |
+
template <> struct InternalType<float> { typedef float scalar_t; };
|
18 |
+
template <> struct InternalType<c10::Half> { typedef float scalar_t; };
|
19 |
+
|
20 |
+
//------------------------------------------------------------------------
|
21 |
+
// CUDA kernel.
|
22 |
+
|
23 |
+
template <class T, int A>
|
24 |
+
__global__ void bias_act_kernel(bias_act_kernel_params p)
|
25 |
+
{
|
26 |
+
typedef typename InternalType<T>::scalar_t scalar_t;
|
27 |
+
int G = p.grad;
|
28 |
+
scalar_t alpha = (scalar_t)p.alpha;
|
29 |
+
scalar_t gain = (scalar_t)p.gain;
|
30 |
+
scalar_t clamp = (scalar_t)p.clamp;
|
31 |
+
scalar_t one = (scalar_t)1;
|
32 |
+
scalar_t two = (scalar_t)2;
|
33 |
+
scalar_t expRange = (scalar_t)80;
|
34 |
+
scalar_t halfExpRange = (scalar_t)40;
|
35 |
+
scalar_t seluScale = (scalar_t)1.0507009873554804934193349852946;
|
36 |
+
scalar_t seluAlpha = (scalar_t)1.6732632423543772848170429916717;
|
37 |
+
|
38 |
+
// Loop over elements.
|
39 |
+
int xi = blockIdx.x * p.loopX * blockDim.x + threadIdx.x;
|
40 |
+
for (int loopIdx = 0; loopIdx < p.loopX && xi < p.sizeX; loopIdx++, xi += blockDim.x)
|
41 |
+
{
|
42 |
+
// Load.
|
43 |
+
scalar_t x = (scalar_t)((const T*)p.x)[xi];
|
44 |
+
scalar_t b = (p.b) ? (scalar_t)((const T*)p.b)[(xi / p.stepB) % p.sizeB] : 0;
|
45 |
+
scalar_t xref = (p.xref) ? (scalar_t)((const T*)p.xref)[xi] : 0;
|
46 |
+
scalar_t yref = (p.yref) ? (scalar_t)((const T*)p.yref)[xi] : 0;
|
47 |
+
scalar_t dy = (p.dy) ? (scalar_t)((const T*)p.dy)[xi] : one;
|
48 |
+
scalar_t yy = (gain != 0) ? yref / gain : 0;
|
49 |
+
scalar_t y = 0;
|
50 |
+
|
51 |
+
// Apply bias.
|
52 |
+
((G == 0) ? x : xref) += b;
|
53 |
+
|
54 |
+
// linear
|
55 |
+
if (A == 1)
|
56 |
+
{
|
57 |
+
if (G == 0) y = x;
|
58 |
+
if (G == 1) y = x;
|
59 |
+
}
|
60 |
+
|
61 |
+
// relu
|
62 |
+
if (A == 2)
|
63 |
+
{
|
64 |
+
if (G == 0) y = (x > 0) ? x : 0;
|
65 |
+
if (G == 1) y = (yy > 0) ? x : 0;
|
66 |
+
}
|
67 |
+
|
68 |
+
// lrelu
|
69 |
+
if (A == 3)
|
70 |
+
{
|
71 |
+
if (G == 0) y = (x > 0) ? x : x * alpha;
|
72 |
+
if (G == 1) y = (yy > 0) ? x : x * alpha;
|
73 |
+
}
|
74 |
+
|
75 |
+
// tanh
|
76 |
+
if (A == 4)
|
77 |
+
{
|
78 |
+
if (G == 0) { scalar_t c = exp(x); scalar_t d = one / c; y = (x < -expRange) ? -one : (x > expRange) ? one : (c - d) / (c + d); }
|
79 |
+
if (G == 1) y = x * (one - yy * yy);
|
80 |
+
if (G == 2) y = x * (one - yy * yy) * (-two * yy);
|
81 |
+
}
|
82 |
+
|
83 |
+
// sigmoid
|
84 |
+
if (A == 5)
|
85 |
+
{
|
86 |
+
if (G == 0) y = (x < -expRange) ? 0 : one / (exp(-x) + one);
|
87 |
+
if (G == 1) y = x * yy * (one - yy);
|
88 |
+
if (G == 2) y = x * yy * (one - yy) * (one - two * yy);
|
89 |
+
}
|
90 |
+
|
91 |
+
// elu
|
92 |
+
if (A == 6)
|
93 |
+
{
|
94 |
+
if (G == 0) y = (x >= 0) ? x : exp(x) - one;
|
95 |
+
if (G == 1) y = (yy >= 0) ? x : x * (yy + one);
|
96 |
+
if (G == 2) y = (yy >= 0) ? 0 : x * (yy + one);
|
97 |
+
}
|
98 |
+
|
99 |
+
// selu
|
100 |
+
if (A == 7)
|
101 |
+
{
|
102 |
+
if (G == 0) y = (x >= 0) ? seluScale * x : (seluScale * seluAlpha) * (exp(x) - one);
|
103 |
+
if (G == 1) y = (yy >= 0) ? x * seluScale : x * (yy + seluScale * seluAlpha);
|
104 |
+
if (G == 2) y = (yy >= 0) ? 0 : x * (yy + seluScale * seluAlpha);
|
105 |
+
}
|
106 |
+
|
107 |
+
// softplus
|
108 |
+
if (A == 8)
|
109 |
+
{
|
110 |
+
if (G == 0) y = (x > expRange) ? x : log(exp(x) + one);
|
111 |
+
if (G == 1) y = x * (one - exp(-yy));
|
112 |
+
if (G == 2) { scalar_t c = exp(-yy); y = x * c * (one - c); }
|
113 |
+
}
|
114 |
+
|
115 |
+
// swish
|
116 |
+
if (A == 9)
|
117 |
+
{
|
118 |
+
if (G == 0)
|
119 |
+
y = (x < -expRange) ? 0 : x / (exp(-x) + one);
|
120 |
+
else
|
121 |
+
{
|
122 |
+
scalar_t c = exp(xref);
|
123 |
+
scalar_t d = c + one;
|
124 |
+
if (G == 1)
|
125 |
+
y = (xref > halfExpRange) ? x : x * c * (xref + d) / (d * d);
|
126 |
+
else
|
127 |
+
y = (xref > halfExpRange) ? 0 : x * c * (xref * (two - d) + two * d) / (d * d * d);
|
128 |
+
yref = (xref < -expRange) ? 0 : xref / (exp(-xref) + one) * gain;
|
129 |
+
}
|
130 |
+
}
|
131 |
+
|
132 |
+
// Apply gain.
|
133 |
+
y *= gain * dy;
|
134 |
+
|
135 |
+
// Clamp.
|
136 |
+
if (clamp >= 0)
|
137 |
+
{
|
138 |
+
if (G == 0)
|
139 |
+
y = (y > -clamp & y < clamp) ? y : (y >= 0) ? clamp : -clamp;
|
140 |
+
else
|
141 |
+
y = (yref > -clamp & yref < clamp) ? y : 0;
|
142 |
+
}
|
143 |
+
|
144 |
+
// Store.
|
145 |
+
((T*)p.y)[xi] = (T)y;
|
146 |
+
}
|
147 |
+
}
|
148 |
+
|
149 |
+
//------------------------------------------------------------------------
|
150 |
+
// CUDA kernel selection.
|
151 |
+
|
152 |
+
template <class T> void* choose_bias_act_kernel(const bias_act_kernel_params& p)
|
153 |
+
{
|
154 |
+
if (p.act == 1) return (void*)bias_act_kernel<T, 1>;
|
155 |
+
if (p.act == 2) return (void*)bias_act_kernel<T, 2>;
|
156 |
+
if (p.act == 3) return (void*)bias_act_kernel<T, 3>;
|
157 |
+
if (p.act == 4) return (void*)bias_act_kernel<T, 4>;
|
158 |
+
if (p.act == 5) return (void*)bias_act_kernel<T, 5>;
|
159 |
+
if (p.act == 6) return (void*)bias_act_kernel<T, 6>;
|
160 |
+
if (p.act == 7) return (void*)bias_act_kernel<T, 7>;
|
161 |
+
if (p.act == 8) return (void*)bias_act_kernel<T, 8>;
|
162 |
+
if (p.act == 9) return (void*)bias_act_kernel<T, 9>;
|
163 |
+
return NULL;
|
164 |
+
}
|
165 |
+
|
166 |
+
//------------------------------------------------------------------------
|
167 |
+
// Template specializations.
|
168 |
+
|
169 |
+
template void* choose_bias_act_kernel<double> (const bias_act_kernel_params& p);
|
170 |
+
template void* choose_bias_act_kernel<float> (const bias_act_kernel_params& p);
|
171 |
+
template void* choose_bias_act_kernel<c10::Half> (const bias_act_kernel_params& p);
|
172 |
+
|
173 |
+
//------------------------------------------------------------------------
|
torch_utils/ops/bias_act.h
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
//------------------------------------------------------------------------
|
10 |
+
// CUDA kernel parameters.
|
11 |
+
|
12 |
+
struct bias_act_kernel_params
|
13 |
+
{
|
14 |
+
const void* x; // [sizeX]
|
15 |
+
const void* b; // [sizeB] or NULL
|
16 |
+
const void* xref; // [sizeX] or NULL
|
17 |
+
const void* yref; // [sizeX] or NULL
|
18 |
+
const void* dy; // [sizeX] or NULL
|
19 |
+
void* y; // [sizeX]
|
20 |
+
|
21 |
+
int grad;
|
22 |
+
int act;
|
23 |
+
float alpha;
|
24 |
+
float gain;
|
25 |
+
float clamp;
|
26 |
+
|
27 |
+
int sizeX;
|
28 |
+
int sizeB;
|
29 |
+
int stepB;
|
30 |
+
int loopX;
|
31 |
+
};
|
32 |
+
|
33 |
+
//------------------------------------------------------------------------
|
34 |
+
// CUDA kernel selection.
|
35 |
+
|
36 |
+
template <class T> void* choose_bias_act_kernel(const bias_act_kernel_params& p);
|
37 |
+
|
38 |
+
//------------------------------------------------------------------------
|